$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{\infty}{\sinh\pars{kx} \over \sinh\pars{x}} & =
\mrm{sgn}\pars{k}\
\overbrace{\int_{0}^{\infty}{1 - \expo{-2\verts{k}x} \over 1 - \expo{-2x}}
\expo{-\pars{1 - \verts{k}}x}\,\dd x}
^{\ds{\mbox{It converges whenever}\ \color{red}{\verts{k} < 1}}}
\\[5mm] & \stackrel{\expo{-2x}\ \mapsto\ x}{=}\,\,\,
{1 \over 2}\,\mrm{sgn}\pars{k}\int_{0}^{1}{1 - x^{\verts{k}} \over 1 - x}\, x^{-1/2 - \verts{k}/2}\,\dd x
\\[5mm] & =
{1 \over 2}\,\mrm{sgn}\pars{k}\bracks{\int_{0}^{1}{1 - x^{-1/2 + \verts{k}/2} \over 1 - x}\,\dd x -
\int_{0}^{1}{1 - x^{-1/2 - \verts{k}/2} \over 1 - x}\,\dd x}
\\[5mm] & =
{1 \over 2}\,\mrm{sgn}\pars{k}\bracks{%
\Psi\pars{{1 \over 2} + {\verts{k} \over 2}} -
\Psi\pars{{1 \over 2} - {\verts{k} \over 2}}}
\\[5mm] & =
{1 \over 2}\,\,\mrm{sgn}\pars{k}\pi
\cot\pars{\pi\bracks{{1 \over 2} - {\verts{k} \over 2}}} =
{1 \over 2}\,\mrm{sgn}\pars{k}\tan\pars{{\pi \over 2}\,\verts{k}}
\\[5mm] & =
\bbx{{1 \over 2}\,\tan\pars{{\pi \over 2}\,k}\,,\qquad \verts{k} < 1}
\end{align}