Let $G$ be a group and let $a,b \in G$ s.t $O(a)=m$ and $O(b)=n$ and $ab=ba$. Then $O(ab)=lcm( m,n)$.
My attempt: since $ab=ba$ then $HK=KH$
$ |HK|=O(H)O(K)/O(H \cup K)$
$l=(mn)/O(H \cap K)$ $\Longrightarrow O(H \cap K). l=(mn)$ $ O(H \cap K) | gcd(m,n)$ $ \therefore mn=O(H \cap K).l \leq gcd(m,n).lcm (m,n)=mn$ $ \Longrightarrow O(H \cap K)=gcd(m,n)$ and $l=lcm(m,n)$ as this is the only possibility
What is wrong with this proof as if $b=a^{-1}$ then it doesnt work.
$l=(mn)/O(H \cap K)$ $\Longrightarrow O(H \cap K). l=(mn)$ $ O(H \cap K) | gcd(m,n)$ $ \therefore mn=O(H \cap K).l \leq gcd(m,n).lcm (m,n)=mn$ $ \Longrightarrow O(H \cap K)=gcd(m,n)$ and $l=lcm(m,n)$ as this is the only possibility
What is wrong with this proof as if $b=a^{-1}$ then it doesnt work.
– Abhinav Singh Nov 24 '15 at 08:00