Show that if $\lim x_n =x$ with $x_n \in \mathbb{R}$ and $x \in \mathbb{R}$, then the sequence given by the averages
$y_n = \frac{x_1 +x_2 + \dots + x_n}{n}$ also converges to $x$.
Solution: Denote the limit of $(x_n)$ as $a$. Let $\varepsilon >0$ Then there exists a positive integer $N_1 > 0$ such that for all $n$,
$$|x_n-a| \leq \frac \varepsilon 2.$$
It follows that for any $n \geq N_1$, we have
\begin{align} & |y_n -a| = \left| \frac{1}{n} \sum_{i=1}^{N_1 =1}(x_i-a) + \frac{1}{n} \sum_{i=N_1 +1 }^n(x_i-a)\right| \\[8pt] \leq {} & \frac{1}{n} \sum_{i=1}^{N_1 =1}|(x_i-a)| +\frac{1}{n} \sum_{i=N_1 +1 }^n|(x_i-a)| \\[8pt] \leq {} & \frac{1}{n} \sum_{i=1}^{N_1 =1}|(x_i-a)| + \frac{(n-N_1)}{n} \cdot \frac{\varepsilon}{2} \\[8pt] \leq {} & \frac{1}{n} \sum_{i=1}^{N_1 =1}|(x_i-a)|+ \frac{\varepsilon}{2} \end{align}
Let $M=\frac{1}{n} \sum_{i=1}^{N_1 =1}|(x_i-a)|$. This is where i am lost because I know that there exists a positive integer $N_2 >0$ such that for all $n \geq N_2$ but i dont know why. This would mean
$$\frac{1}{n} \sum_{i=1}^{N_1 =1}|(x_i-a)| \leq \frac{\varepsilon}{2}.$$
Now by combining this with the result from above, if $n \geq \max\{N_1,N_2\}$, then
$$| y_n - a| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$