Prove that $\lim_{x\to 0}\frac{2+\cos x}{x^3\sin x}-\frac{3}{x^4}=\frac{1}{60}$ without using L Hospital rule or series expansion.
I tried $\lim_{x\to 0}\frac{2+\cos x}{x^3\sin x}-\frac{3}{x^4}=\lim_{x\to 0}\frac{2+\cos x}{x^4\lim_{x\to 0}\frac{\sin x}{x}}-\frac{3}{x^4}$
$=\lim_{x\to 0}\frac{2+\cos x}{x^4}-\frac{3}{x^4}=\lim_{x\to 0}\frac{\cos x-1}{x^4}=\lim_{x\to 0}\frac{-2\sin^2 \frac{x}{2}}{x^4}=\lim_{x\to 0}\frac{-2\sin^2 \frac{x}{2}}{4x^2(\frac{x}{2})^2}$
$=\lim_{x\to 0}\frac{-1}{2x^2}$
Now it has turned into limit does not exist.I dont know where have i made mistake,because as per my knowledge my every step is correct.If i have made mistake please correct me
Please help me.Thanks.