2

I got the following identity from commutative algebra.

I am curious to see elegant elementary methods.

$$ {{a+b+c-1}\choose c} = \sum_{i+j=c} {{a+i-1}\choose i}{{b+j-1}\choose j} $$

5 Answers5

5

It is just a case of Vandermonde's identity.

The LHS is the coefficient of $x^c$ in $\frac{1}{(1-x)^{a+b}}$, by stars and bars.

On the other hand, $\frac{1}{(1-x)^{a+b}}=\frac{1}{(1-x)^{a}}\cdot\frac{1}{(1-x)^b}$, hence:

$$\begin{eqnarray*} \binom{a+b+c-1}{c}=[x^c]\frac{1}{(1-x)^{a+b}}&=&\sum_{d=0}^{c}[x^d]\frac{1}{(1-x)^a}\cdot [x^{c-d}]\frac{1}{(1-x)^b}\\ &=& \sum_{i+j=c}\binom{a+i-1}{i}\binom{b+j-1}{j}, \end{eqnarray*}$$ as wanted.

Jack D'Aurizio
  • 353,855
2

For variety's sake here is a slightly different approach. Suppose we seek to evaluate

$$\sum_{k=0}^c {k+a-1\choose a-1} {b-1+c-k\choose b-1}.$$

Introduce $${b-1+c-k\choose b-1} = {b-1+c-k\choose c-k} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{c-k+1}} (1+z)^{b-1+c-k} \; dz.$$

Observe that this is zero when $k\gt c$ so we may extend $k$ to infinity to get for the sum

$$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{c+1}} (1+z)^{b-1+c} \sum_{k\ge 0} {k+a-1\choose a-1} \frac{z^k}{(1+z)^k} \; dz \\ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{c+1}} (1+z)^{b-1+c} \frac{1}{(1-z/(1+z))^a} \; dz \\ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{c+1}} (1+z)^{a+b-1+c} \frac{1}{(1+z-z)^a} \; dz \\ = {a+b+c-1\choose c}.$$

We can take $\epsilon \lt 1/2$ for the series to converge.

Marko Riedel
  • 61,317
  • (+1) I appreciate different approaches, and although this works on the coefficients of $(1+z)^{-k}$, residues is a nice method of computation. – robjohn Dec 28 '15 at 00:24
  • I often answer questions like this one using the Egorychev method which has the advantage that it includes very simple problem instances (see above) yet it can be extended to compute rather complicated binomial sums. A simple example might encourage the reader to try the method on more challenging ones involving convolutions of several binomial coefficients. – Marko Riedel Dec 28 '15 at 02:00
2

Using the identity $$ \sum_{j=0}^n\binom{n-j}{k}\binom{j}{m}=\binom{n+1}{k+m+1} $$ proven in this answer, we get $$ \begin{align} \sum_{i+j=c}\binom{a+i-1}{i}\binom{b+j-1}{j} &=\sum_{i+j=c}\binom{a+i-1}{a-1}\binom{b+j-1}{b-1}\\ &=\binom{a+b+c-1}{a+b-1}\\ &=\binom{a+b+c-1}{c}\\ \end{align} $$

robjohn
  • 345,667
1

Rewrite as $$\binom{a+b+c-1}{a+b-1} = \sum_{i=0}^c \binom{a+i-1}{a-1}\binom{b+c-i-1}{b-1},$$ which we can prove combinatorially by counting the number of $(a+b-1)$-subsets of $\{1,\dots,a+b+c-1\}$ in two different ways. The LHS is clear. To obtain the RHS, condition on the $a$th smallest element $a+i$. Then we must choose $a-1$ smaller elements from $\{1,\dots,a+i-1\}$ and the remaining $b-1$ larger elements from $\{a+i+1,\dots,a+b+c-1\}$.

RobPratt
  • 45,619
0

Essentially, Marko Riedel's comment above. $$ \begin{split} \sum_{\substack{i+j=c\\i\ge 0,j\ge 0}}\binom{a+i-1}{i}\binom{b+j-1}{j} &=\sum_{\substack{i+j=c\\i\ge 0,j\ge 0}}(-1)^i\binom{-a}{i}(-1)^j\binom{-b}{j}\\ &=\sum_{\substack{i+j=c\\i\ge 0,j\ge 0}}(-1)^{i+j}\binom{-a}{i}\binom{-b}{j}\\ &=(-1)^c\binom{-a-b}{c}=\binom{a+b+c-1}{c} \end{split} $$