5

Find the value of $\sqrt{1+\frac{1}{1^2}+\frac{1}{2^2}}+\sqrt{1+\frac{1}{2^2}+\frac{1}{3^2}}+...+\sqrt{1+\frac{1}{1999^2}+\frac{1}{2000^2}}$

I found the general term of the sequence.
It is $\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}}$
So the sequence becomes $\sum_{k=1}^{1999}\sqrt{1+\frac{1}{k^2}+\frac{1}{(k+1)^2}}$
I tried telescoping but i could not split it into two partial fractions.And this raised to $\frac{1}{2}$ is also troubling me.What should i do to find the answer?

Vinod Kumar Punia
  • 5,648
  • 2
  • 41
  • 96

2 Answers2

13

After taking LCM, we get the general term of the series as:

$$\sqrt{\frac{(k^{2}+k+1)^{2}}{k^{2}(k+1)^{2}}} $$

$$=> \frac{k^{2}+k+1}{k^{2}+k}$$

$$=> 1 + \frac{1}{k^{2}+k}$$

So we have $$\sum_{k=1}^{1999} 1 + \frac{1}{k^{2}+k}$$

$$=> 1999 + \sum_{k=1}^{1999}\frac{1}{k(k+1)}$$

$$=> 1999 + \sum_{k=1}^{1999}\frac{1}{k} - \frac{1}{(k+1)}$$

$$=> 1999 + 1 - \frac{1}{2000}$$

$$=> 2000 - \frac{1}{2000}$$

Ashish Gupta
  • 1,633
3

Given $$1+\frac{1}{k^2}+\frac{1}{(k+1)^2} = 1+\frac{1}{k^2}+\frac{1}{(k+1)^2}-\frac{2}{k(k+1)}+\frac{2}{k(k+1)}$$

So $$1^2+\left[\frac{1}{k}-\frac{1}{(k+1)}\right]^2+2\left[\frac{1}{k}-\frac{1}{(k+1)}\right]=\left[1+\frac{1}{k}-\frac{1}{k+1}\right]^2$$

juantheron
  • 53,015