I have two independent random variables say $X$, $Y$. Both of them follow exponential distribution with parameter $λ$ i.e $X\sim λe^{−λx}$ and $Y\sim λe^{−λy}$. I want to find the pdf of $Z=XY$ given $X>c$ i.e $p_{Z/X>c}(z/x>c)$ where $c$ is a positive fixed number.
Can I write it like this: $$p_{Z/X>c}(z/x>c)=\frac{p_{Z}(z)}{P_{X}(X>c)},$$ or is the following formula right $$\int_{c}^{\infty}p_{Y}(z/x)p_{X}(x)dx\ ?$$