Question: Prove that if $z = \cos (\theta) + i\sin(\theta)$, then
<p><span class="math-container">$$ z^n + {1\over z^n} = 2\cos(n\theta) $$</span></p>
What I have attempted
If $$ z = \cos (\theta) + i\sin(\theta) $$
then $$ z^n = \cos (n\theta) + i\sin(n\theta) $$
$$ z^n + {1\over z^n} $$
$$ \cos (n\theta) + i\sin(n\theta) + {1\over \cos (n\theta) + i\sin(n\theta)} $$
$$ (\cos (n\theta) + i\sin(n\theta))\cdot(\cos (n\theta) + i\sin(n\theta)) + 1 $$
$$ \left[ {(\cos (n\theta) + i\sin(n\theta))\cdot(\cos (n\theta) + i\sin(n\theta)) + 1\over \cos (n\theta) + i\sin(n\theta)} \right] $$
$$ \left[ {\cos^2(n\theta) + 2i\sin(n\theta)\cos (n\theta) - \sin^2(n\theta) + 1\over \cos (n\theta) + i\sin(n\theta)} \right] $$
Now this is where I am stuck.. I tried to use a double angle identity but I can't eliminate the imaginary part..
