How do I go about evaluating this?
$$\lim_{n\to\infty} \left( \dfrac{n!}{n^n} \right)^{\dfrac{1}{n}}$$
How do I go about evaluating this?
$$\lim_{n\to\infty} \left( \dfrac{n!}{n^n} \right)^{\dfrac{1}{n}}$$
Recall from Stirling's Approximation that, $$n! \sim \sqrt{2\pi n} n^n e^{-n}$$ $$\therefore\lim_{n\to\infty} \left( \frac{n!}{n^n} \right)^{\frac{1}{n}}=\lim_{n \to \infty} \left( \frac{\sqrt{2\pi n} n^n }{n^n e^n}\right)^{1/n}=\lim_{n\to \infty}e^{-1} (2 \pi)^{1/2n}n^{1/2n}=\frac{1}{e}$$
Apply the theorem which says that if $a_n\to L$ then $\sqrt[n]{a_1\cdots a_n} \to L$ to the limit $(1+\frac{1}{n})^{n} \to e$.