5

Prove that that $\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c} \geq \dfrac{(x+y+z)^2}{a+b+c}.$ with $a,b,c$ positive real numbers.

Attempt

I tried using Cauchy-Schwarz, but I can't find the correct $a_i$ and $b_i$. How would you solve this using Cauchy-Schwarz?

Jacob Willis
  • 1,601
  • 1
    with $a,b,c$ positive reals and $x,y,z$ real numbers – Dr. Sonnhard Graubner Jan 04 '16 at 19:19
  • 1
    $$(a+b+c)\left(\frac{x^2}{a}+\frac{y^2}{b}+\frac{z^2}{c}\right)\ge \left(\sqrt{a}\sqrt{\frac{x^2}{a}}+ \sqrt{b}\sqrt{\frac{y^2}{b}}+\sqrt{c}\sqrt{\frac{z^2}{c}}\right)^2=(x+y+z)^2$$ – user236182 Jan 04 '16 at 19:24
  • See the proof in http://math.stackexchange.com/questions/1594286/prove-that-if-a-b-and-c-are-positive-real-numbers-then-fraca3b-fra/1594373#1594373 – Gordon Jan 04 '16 at 19:28
  • Titu's lemma (https://brilliant.org/wiki/titus-lemma/) and the Cauchy-Schwarz inequality are essentially equivalent. It is interesting to point out that Titu's lemma for two variables (almost trivial) plus induction give a neat proof of the general Cauchy-Schwarz inequality. – Jack D'Aurizio Jan 04 '16 at 19:49

2 Answers2

6

More generally, the following is called Titu's Lemma or Engel's form of Cauchy-Schwarz inequality:

For all $a_i\in\mathbb R$, $b_i\in\mathbb R^+$:

$$\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\cdots+\frac{a_n^2}{b_n}\ge \frac{(a_1+a_2+\cdots+a_n)^2}{b_1+b_2+\cdots+b_n}$$

Proof: by Cauchy-Schwarz: $$(b_1+b_2+\cdots+b_n)\left(\frac{a_1^2}{b_1}+\frac{a_2^2}{b_2}+\cdots+\frac{a_n^2}{b_n}\right)$$

$$\ge \left(\sqrt{b_1}\sqrt{\frac{a_1^2}{b_1}}+\sqrt{b_2}\sqrt{\frac{a_2^2}{b_2}}+\cdots+\sqrt{b_1}\sqrt{\frac{a_n^2}{b_n}}\right)^2$$

$$=(|a_1|+|a_2|+\cdots+|a_n|)^2\ge (a_1+a_2+\cdots+a_n)^2$$

with equality if and only if $\frac{a_1^2}{b_1^2}=\frac{a_2^2}{b_2^2}=\cdots=\frac{a_n^2}{b_n^2}$ and $(|a_1|+|a_2|+\cdots+|a_n|)^2= (a_1+a_2+\cdots+a_n)^2$, i.e. if and only if $\frac{a_1}{b_1}=\frac{a_2}{b_2}=\cdots=\frac{a_n}{b_n}$.

user236182
  • 13,324
0

HINT: the left-hand side minus the right-hand side is equal to $${z}^{2}{a}^{2}b+{y}^{2}{a}^{2}c+{z}^{2}a{b}^{2}-2\,abcxy-2\,abcxz-2\,a bcyz+{y}^{2}a{c}^{2}+{x}^{2}{b}^{2}c+{x}^{2}b{c}^{2} \geq 0$$ can you proceed? (sum of squares!)