If $\lim_{n \to \infty} z_n = a$, prove that $\lim_{n \to \infty} \frac 1 n \sum_{k = 1}^n z_k = a$.
Here is my attempt:
$$\left|\lim_{n \to \infty} z_n - a\right| \implies |z_n - a| < \epsilon \text{ for } n > N_1$$
$$\left|\frac 1 n \sum_{1}^n z_k - a\right| \le \frac 1n \sum_1^n |z_k - a|$$
I think I should make sum of $|(z_k-a)|$ less than epsilon but how can I do it?