$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\bbox[5px,#ffd]{\int_{1}^{\infty}{2x^{2}\ln^{2}\pars{x} \over
\pars{x^{2} - 1}^{2}}\,\dd x}
\,\,\,\stackrel{x\ \mapsto\ 1/x}{=}\,\,\,
2\int_{0}^{1}{\ln^{2}\pars{x} \over \pars{1 - x^{2}}^{2}}\,\dd x
\\[5mm] = &\
\left. -\,{1 \over a}\,\partiald{}{a}\int_{0}^{1}{\ln^{2}\pars{x} \over
a^{2} - x^{2}}\,\dd x\,\right\vert_{\ a\ = 1}
=
\left. -\,\partiald{}{a}\pars{{1 \over a}\int_{0}^{1/a}{\ln^{2}\pars{ax} \over
1 - x^{2}}\,\dd x}\,\right\vert_{\ a\ = 1}
\\[5mm] = &\
\color{red}{\mrm{f}\pars{1} - \mrm{f}\, '\pars{1}}
\\[2mm] &\
\mbox{where}\quad
\mrm{f}\pars{a} \equiv
\int_{0}^{1/a}{\ln^{2}\pars{ax} \over 1 - x^{2}}\,\dd x
\label{1}\tag{1}
\end{align}
\begin{align}
\mrm{f}\pars{a} & \equiv
\int_{0}^{1/a}{\ln^{2}\pars{ax} \over 1 - x^{2}}\,\dd x
\\[5mm] & =
{1 \over 2}\int_{0}^{1/a}{\ln^{2}\pars{ax} \over 1 - x}\,\dd x -
{1 \over 2}\int_{0}^{-1/a}{\ln^{2}\pars{-ax} \over 1 - x}\,\dd x
\\[5mm] & =
-\int_{0}^{1/a}\mrm{Li}_{2}'\pars{x}\ln\pars{ax}\,\dd x
\\[2mm] &\
+ \int_{0}^{-1/a}\mrm{Li}_{2}'\pars{x}\ln\pars{-ax}\,\dd x
\\[5mm] & =
\int_{0}^{1/a}\mrm{Li}_{3}'\pars{x}\,\dd x -
\int_{0}^{-1/a}\mrm{Li}_{3}'\pars{x}\,\dd x
\\[5mm] & =
\mrm{Li}_{3}\pars{1 \over a} - \mrm{Li}_{3}\pars{-\,{1 \over a}}
\end{align}
\begin{equation}
\left\{\begin{array}{rcl}
\ds{\mrm{f}\pars{1}} & \ds{=} &
\ds{\mrm{Li}_{3}\pars{1} - \mrm{Li}_{3}\pars{-1}}
\\ && \ds{=
\sum_{n = 1}^{\infty}{1 \over n^{3}} -
\sum_{n = 1}^{\infty}{\pars{-1}^{n} \over n^{3}}}
\\ & \ds{=} &
\ds{{7 \over 4}\sum_{n = 1}^{\infty}{1 \over n^{3}} =
\color{red}{{7 \over 4}\,\zeta\pars{3}}}
\\[5mm]
\ds{\mrm{f}\, '\pars{1}} & \ds{=} &
\ds{-\mrm{Li}_{2}\pars{1} + \mrm{Li}_{2}\pars{-1}
\\ \ds{=}
-\,{\pi^{2} \over 6} + \pars{-\,{\pi^{2} \over 12}} =
\color{red}{-\,{\pi^{2} \over 4}}}
\end{array}\right. \label{2}\tag{2}
\end{equation}
With (\ref{1}) and (\ref{2}):
$$
\bbx{\large\bbox[5px,#ffd]{\int_{1}^{\infty}{2x^{2}\ln^{2}\pars{x} \over
\pars{x^{2} - 1}^{2}}\,\dd x} =
{1 \over 4}\bracks{7\zeta\pars{3} + \pi^{2}}} \\
$$