Let $\{a_n\}_{n \geq0}$ and $\{b_n\}_{n \geq0}$ be two real sequences and suppose that $\lim_{n \to \infty} b_n=b \geq 0$ exist. Show that $$\limsup_{n \to \infty}a_nb_n= \limsup_{n \to \infty}a_n \cdot \lim_{n \to \infty}b_n$$
I am stacked on this problem. Could anyone give me a hint?