First, we can write the expression in terms of only $\sin$ and $\cos$,
$$\tan 20^\circ + \tan 40^\circ + \tan 80^\circ - \tan 60^\circ$$
$$= \frac{\sin 20^\circ}{\cos 20^\circ} + \frac{\sin 40^\circ}{\cos 40^\circ} + \frac{\sin 80^\circ}{\cos 80^\circ} - \sqrt{3}$$
$$= \frac{\sin 20^\circ \cos 40^\circ \cos 80^\circ + \cos 20^\circ \sin 40^\circ \cos 80^\circ + \cos 20^\circ \cos 40^\circ \sin 80^\circ}{\cos 20^\circ \cos 40^\circ \cos 80^\circ} - \sqrt{3}$$
Since $\cos \theta \cdot \cos \left(60^\circ - \theta \right) \cdot \cos \left(60^\circ + \theta \right) = \frac{1}{4} \cos 3\theta$, we get,
$$\frac{2\left[2 \sin 20^\circ \cos 40^\circ \cos 80^\circ + 2 \cos 20^\circ \sin 40^\circ \cos 80^\circ + 2 \cos 20^\circ \cos 40^\circ \sin 80^\circ \right]}{\cos 60^\circ} - \sqrt{3}$$
Pairing terms in the numerator we get,
$$4\left[\cos 20^\circ \left(\sin 40^\circ \cos 80^\circ + \cos 40^\circ \sin 80^\circ \right) + \cos 40^\circ \left(\sin 20^\circ \cos 80^\circ + \cos 20^\circ \sin 80^\circ \right) + \cos 80^\circ \left(\sin 20^\circ \cos 40^\circ + \cos 20^\circ \sin 40^\circ \right) \right] - \sqrt{3}$$
Since $\sin(A + B) = \sin A \cos B + \cos A \sin B$, we get,
$$4\left[\cos 20^\circ \sin 120^\circ + \cos 40^\circ \sin 100^\circ + \cos 80^\circ \sin 60^\circ \right] - \sqrt{3}$$
$$= 4\left[\frac{\sqrt{3}}{2} \left(\cos 20^\circ + \cos 80^\circ \right) + \cos 40^\circ \sin 100^\circ \right] - \sqrt{3}$$
Since $\cos A + \cos B = 2\cos(\frac{A + B}{2})\cos(\frac{A - B}{2})$ and $\cos A \sin B = \sin(B + A) + \sin(B - A)$, we get,
$$4\left[\sqrt{3} \cos 50^\circ \cos 30^\circ + \frac{1}{2} \left(\sin 140^\circ + \sin 60^\circ \right) \right] - \sqrt{3}$$
Since $\cos(90^\circ - \theta) = \sin \theta$ and $\sin(180^\circ - \theta) = \sin \theta$, we get,
$$4\left[2\sin 40^\circ + \frac{\sqrt{3}}{4} \right] - \sqrt{3}$$
$$= \boxed{8\sin 40^\circ}$$
both as a simple trig equation whose roots are integer multiples of 20
degrees and as a polynomial in $t=\tan x$
, whose sum of roots will give the result
– David Quinn Feb 04 '16 at 15:03