This is how I've resolve this ODE-1 :
$$(x^2 +y^2 +x) \, dx + xy \, dy=0$$
Check if the eq is exact: $${\partial M \over \partial y}={\partial \over \partial y}(x^2 +y^2 x)=2y$$ $${\partial N \over \partial x}={\partial \over \partial x}(xy)=y$$ $$A=2y \neq y=B$$
The equation is not exact. Trying to find the integrating factor : $$f=(A-B){1 \over N}$$ $$f=(2y-y){1 \over xy}={1 \over x}$$ Integrating factor: $$µ=e^{\int f(x) \, dx}=e^{\int {1 \over x} \, dx}=x$$ Now I can find the solution of the ODE by integrate the ODE with the integrating factor: $$\int x(x^2 +y^2 + x)\,dx + \int x(xy)\,dy=0$$ $$\int (x^3 +xy^2 +x^2)\,dx + \int x^2 y\,dy=0$$ $$\int x^3\,dx + \int xy^2 \,dx + \int x^2 \,dx + \int x^2 y\,dy=0$$ $${x^4 \over 4} + y^2 {x^2 \over 2} + {x^3 \over 3} + x^2 {y^2 \over 2} =0$$ $${x^4 \over 4} + {1 \over 2} x^2 y^2 + {x^3 \over 3} + {1 \over 2} x^2 y^2 =0$$ $$x^2 y^2 + {x^4 \over 4} + {x^3 \over 3} =0$$ The solution is : $12x^2 y^2 +3x^4 +4x^3 =C$
My teacher solution :
By integrating we get : ${x^4 \over 4}+{x^3 \over 3}+{1 \over 2}x^2 y^2=C$
The solution is : $3x^4 +4x^3 +6x^2 y^2 = C$
That's all she wrote...
Did I do something wrong or am I right? :s Thank you
I've skip some steps but I've now the right result :) thnx
– Marc-André Jean Feb 07 '16 at 01:07