0

Let $K$ be a compact subset of $\Omega \subset \mathbb{R^m}$, $\Omega$ is open and nonempty and let $f \in C(\Omega)$ have support contained in $K$. For $\epsilon \gt 0$, let

$$f_{\epsilon}(x)=\frac{1}{C(\epsilon)}\int_{K} \phi_{y,\epsilon}(x) f(y) dy$$

where $$C(\epsilon)=\int_{\mathbb{R^m}}\phi_{y,\epsilon}(x) dy$$, For a fixed $y$

$$\phi_{y,\epsilon}(x)= \left\{ \begin{array}{ll} \exp(-\frac{\epsilon^2}{\epsilon^2-|x-y|^2}) & \mbox{if $|x-y| \lt \epsilon$};\\ 0 & \mbox{otherwise}.\end{array} \right. $$

If $\epsilon \lt \text{dist}(K,\partial \Omega)$, then show that $f_{\epsilon} \in D(\Omega)$; moreover, $f_{\epsilon} \to f$ uniformly as $\epsilon \to 0$.

I look at $$|\frac{1}{C(\epsilon)}\int_{K} \phi_{y,\epsilon}(x) f(y) dy-f(x)|=|\frac{\int_{K} \phi_{y,\epsilon}(x) f(y) dy-\int_{K}\phi_{y,\epsilon}(x)f(x) dy}{\int_{K}\phi_{y,\epsilon}(x) dy}| $$ $$ \le \frac{\int_{K}|f(y)-f(x)|\phi_{\epsilon,y}(x) dy}{\int_{K} \phi_{y,\epsilon}(x)dy}$$

For $y,x \in K$, as $\epsilon \to 0, |x-y| \lt \epsilon$ and continuity of $f$ forces $f(y)-f(x)| \lt \delta$ (for any given $\delta\gt 0$) and hence the difference can be arbitrarily small as well.

$f_{\epsilon}$ is compactly supported as $f$ is compactly supported. I am unable to show that $f_{\epsilon}$ is $C^{\infty}$ rigorously.

Thanks for the help!!

tattwamasi amrutam
  • 12,802
  • 5
  • 38
  • 73

0 Answers0