I am trying to find the limit of $\frac{\tan(x)-x}{x^3}$ as $x$ approaches $0$. I know that this can be found by using L'Hospital's Rule 3 times. Is there a way to solve this problem without using L'Hospital's Rule?
Please do not use Taylor series; I consider this to be an equivalent method. I have noticed that the required number of applications of L'Hospital's Rule is precisely the order of the first non-zero derivative, which I think is essentially because a product is $0$ if and only if at least one factor is $0$.