0

How to show that

$\limsup \{a_n\}=-\liminf \{-a_n\}$

I could use this property : if $a= \sup(X) $ then, $-a=\inf(-X)$?

where

$\lim\sup\{a_n\}=\lim_{n\rightarrow\infty}[\sup\{a_k\,|\,k\geq n\}]$

$\liminf\{a_n\}=\lim_{n\rightarrow\infty}[\inf\{a_k\,|\,k\geq n\}]$

albert
  • 453

0 Answers0