For a positive integer $n$ let $\nu(n)$ be the number of digits in its decimal expansion. Then
$$
\overline{a\,b}-\overline{b\,a}=a\,10^{\nu(b)}+b-b\,10^{\nu(a)}-a=a(10^{\nu(b)}-1)-b(10^{\nu(a)}-1).
$$
If $a$ and $b$ are distinct primes and $\overline{a\,b}-\overline{b\,a}=a(b-1)$, then $a\mid10^{\nu(a)}-1=9\times\mathbf{1}_{\nu(a)}$, where $\mathbf{1}_{n}=1\dots1$ is a repunit. This implies hat the only possibilities for $a$ are $a=3$ or a prime repunit. If $a=3$ then
$$
\overline{3\,b}-\overline{b\,3}=3\,10^{\nu(b)}+b-10\,b-3=3(b-1)\implies b=\frac{10^{\nu(b)}}{4}
$$
and $b$ is not a prime integer.
Finally, if $a$ is a prime repunit, then it is easy to see that $\overline{a\,b}-\overline{b\,a}\le0$.
If we consider the equation $|\overline{a\,b}-\overline{b\,a}|=a(b-1)$, there are solutions with $a=3$ and $b=\dfrac{10^{\nu(b)}-2}{2}$, which is prime for $\nu(b)=3, 4, 5, 7, 15, 55,\dots$.