I was thinking poission distribution, actually i like it. Then i thought there is no reason for some events to be integers. We can define occurences as half finished homeworks for example, or 3.7 apples etc.
So when i give wolfram an example, it actually calculates. Mean occurence of events is 3.2, what is the probability that i see this event to be between 1 and 4 ? It is about 0.6076
My question is that although wolfram calculates, i dont know and i couldnt find this integral (all density). Can it be calculated ?
$$\int_{0}^{+\infty}\frac{t^{n}}{n!}\,dn$$