I am trying to prove that $$\liminf_{n→∞} s_n \le \liminf_{n→∞} σ_n$$ given that $σ_n=\frac1n(s_1+s_2+\dots+s_n)$.
Setting $\alpha = \liminf_{n→∞}s_n$, hence $$\forall \epsilon>0 \ \exists N: \forall n \geq N, \ \alpha - \epsilon <\inf s_n \le s_n$$ Now, I know I can split $σ_n$ to get $\sigma_n \geq \frac{1}{n}\ (s_1 +\dots + s_N) + \frac{1}{n}\ (s_{N+1}+\dots+s_n)$ and later\begin{align}\sigma_n &\geq \frac{1}{n}\ (s_1 +\dots + s_N)+ \frac{1}{n}(\alpha - \epsilon)(n-N)\\\implies \sigma_n &\geq \frac{1}{n}\ (s_1 + \dots + s_N)- \frac{N}{n}(\alpha - \epsilon)+\alpha - \epsilon\end{align} Now, $\frac1n(s_1 + \dots+ s_N)-\frac{N}{n}(\alpha-\epsilon)<\epsilon_1$ as $n \rightarrow \infty$ arbitrarily small, so $$\forall \ \epsilon_1>0 \ \exists N_1: \forall n>N_1: \sigma_n>\alpha-\epsilon-\epsilon_1$$ Now I really don't know how to infer from it that $\liminf_{n→∞} s_n \leq \liminf_{n→∞} σ_n$.
So any help will be much appreciated!