How to prove that,$$\int\int\cdots\int p_1^{x_1} p_2^{x_2} \cdots p_m^{x_m} \, dp_1 \, dp_2 \cdots dp_m = \frac{x_1!\cdots x_m!}{\left(m-1+\sum_{i=1}^m x_i\right)!}$$ where $0\leq p_i\leq 1$ and $\sum\limits_{i=1}^m p_i=1$,
My attempt: If we have, $$\int_{0}^{1}\int_{0}^{1}{p_{1}^{x_{1}}p_{2}^{x_{2}}dp_{1}dp_{2}}=\int_{0}^{1}\int_{0}^{1}{p_{1}^{x_{1}}(1-p_{1})^{x_{2}}dp_{1}dp_{2}}$$ $$=\int_{0}^{1}{p_{1}^{x_{1}}(1-p_{1})^{x_{2}}dp_{1}}=\beta(x_{1}+1,x_{2}+1)=\dfrac{x_{1}!x_{2}!}{(x_{1}+x_{2}+2)!}$$
Since, $p_{1}+p_{2}=1$ and $\beta(x,y)=\dfrac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$. Now, for the next case
$$\int_{0}^{1}\int_{0}^{1}\int_{0}^{1}{p_{1}^{x_{1}}p_{2}^{x_{2}}p_{3}^{x_{3}}dp_{1}dp_{2}dp_{3}}=\int_{0}^{1}\int_{0}^{1}{p_{1}^{x_{1}}p_{2}^{x_{2}}(1-(p_{1}+p_{2}))^{x_{3}}dp_{1}dp_{2}}$$
I tried with change variable $p_{1}+p_{2}=t$, but doesn't work. Any help, for prove the general statement... Regards!