We start with the equation of interest
$$\log\left(1+\frac{bx}{a}\right)=\frac{4cx}{a} \tag 1$$
Now, let $\alpha = b/a$ and $\beta = 4c/a$. Then, we can rewrite $(1)$ as
$$1+\alpha x=e^{\beta x} \tag 2$$
Multiplying $(2)$ by $\frac{\beta}{\alpha}e^{\beta/\alpha}$ yields
$$\left(\frac{\beta}{\alpha}+\beta x\right)e^{\beta/\alpha}=\frac{\beta}{\alpha}e^{\left(\frac{\beta}{\alpha}+\beta x\right)}\tag 3$$
Rearranging $(3)$ we obtain
$$-\left(\frac{\beta}{\alpha}+\beta x\right)e^{-\left(\frac{\beta}{\alpha}+\beta x\right)}=-\frac{\beta}{\alpha}e^{-\beta/\alpha} \tag 4$$
Invoking the definition of Lambert's $W$ reveals
$$-\left(\frac{\beta}{\alpha}+\beta x\right)=W\left(-\frac{\beta}{\alpha}e^{-\beta/\alpha}\right)$$
whereupon solving $(5)$ for $x$, we obtain
$$x=-a\left(\frac1b+\frac{1}{4c}W\left(-\frac{4c}{b}e^{-4c/b}\right)\right)$$