Prove that $$1+\frac{1}{3}+\frac{1\cdot 3}{3\cdot 6}+\frac{1\cdot 3\cdot 5}{3\cdot 6 \cdot 9}+.........=\sqrt{3}$$
$\bf{My\; Try::}$ Using Binomial expansion of $$(1-x)^{-n} = 1+nx+\frac{n(n+1)}{2}x^2+\frac{n(n+1)(n+2)}{6}x^3+.......$$
So we get $$nx=\frac{1}{3}$$ and $$\frac{nx(nx+x)}{2}=\frac{1}{3}\cdot \frac{3}{6}$$
We get $$\frac{1}{3}\left(\frac{1}{3}+x\right)=\frac{1}{3}\Rightarrow x=\frac{2}{3}$$
So we get $$n=\frac{1}{2}$$
So our series sum is $$(1-x)^{-n} = \left(1-\frac{2}{3}\right)^{-\frac{1}{2}} = \sqrt{3}$$
Although I know that this is the simplest proof, can we solve it any other way someting like defining $a_{n}$ and then use Telescopic sum.
Thanks.
$$\sum_{k\ge 0}\frac{\frac{(2k-1)!}{2^{k-1}(k-1)!}}{3^k\cdot k!}=\sum\frac{(2k-1)!}{k!(k-1)!}\left(\frac12\right)^{k-1}\left(\frac13\right)^k=\sum_{k\ge 0}\binom{2k-1}{k}\left(\frac12\right)^{k-1}\left(\frac13\right)^k$$ and try after some kind of finite calculus or something, Idk.
– Masacroso Mar 11 '16 at 09:46