Prove that $$\frac{\sqrt{3}}{8}<\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\frac{\sin x}{x}\,dx<\frac{\sqrt{2}}{6}$$
My try: Using $$\displaystyle \sin x<x$$ and $$\frac{\sin x-0}{x-0}>\frac{1-0}{\frac{\pi}{2}-0}=\frac{2}{\pi}$$
So we get $$\frac{2}{\pi}<\frac{\sin x}{x}<1$$
So we get $$\frac{2}{\pi}\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}1\,dx<\frac{\sin x}{x}<1\cdot \int_{\frac{\pi}{4}}^{\frac{\pi}{3}}\,$$
But this is not what I have to prove here.