The task is to evaluate for what values of $a \in \Bbb R_+$ does the series $$\sum_{n=1}^\infty \frac{a^n \times n!}{n^n}$$ converge. I've already checked with the ratio test that it converges for $ a < e $ and diverges for $a > e$, but I can't seem to find the answer what happens for $a = e$: $$\sum_{n=1}^\infty \frac{e^n \times n!}{n^n}$$
What test should I apply?