1

Find all positive integral solutions to the equation

$ x^3+2y^3=4z^3$

1 Answers1

2

$x$ is even, so if $x'=x/2$ then $$x'^3=\frac{2z^3-y^3}{4},$$ Now $y$ is even, so $$x'^3=\frac{z^3}{2}-2y'^3$$ Now $z$ is even and $$x'^3+2y'^3=4z'^3$$ By the same manner we can conclude that $(x,y,z)=(0,0,0)$