-1

Suppose $A$ be an $n×n$ real matrix be such that $A^k= O$ for some $k \in \Bbb N$ then prove that $I+A$ is invertible.

Please do not use eigenvalues.

Ben Grossmann
  • 225,327

2 Answers2

3

$I-A^k = (I+A)(I - A...+(-1)^{k-1} A^{k-1}) = I$

$(I - A...+(-1)^{k-1} A^{k-1}) = (I+A)^{-1}$

Doug M
  • 57,877
2

1 - A + A^2 - A^3 + ... (a finite sum)

almagest
  • 18,380