$$\lim_{n\to \infty}2^{\frac{1}{n}}$$
Basically looking at $$\lim_{n\to \infty}2^{\frac{1}{n}}=2^{\lim_{n\to \infty}{\frac{1}{n}}}=2^0=1$$
But if I use $$\lim_{n\to \infty}2^{\frac{1}{n}}=\lim_{n\to \infty}e^{\ln\left(2^{\frac{1}{n}}\right)}=\lim_{n\to \infty}e^{{\frac{1}{n}}\cdot{\ln(2)}}=\lim_{n\to \infty}e^{\frac{1}{n}}\cdot\lim_{n\to \infty}e^{\ln(2)}=1\cdot2=2$$
Where did I got it wrong?