Let $\alpha$ be a real number such that $0\leq\alpha\leq\pi$.If $f(x)=\cos x+\cos(x+\alpha)+\cos(x+2\alpha)$ takes some constant number $c$ for any $x\in R$,then find the value of $\lfloor c+\alpha \rfloor$.
I simplified $f(x)=\cos x+\cos(x+\alpha)+\cos(x+2\alpha)=\cos(x+\alpha)(2\cos\alpha+1)$
If $f(x)$ takes the value $c$,then $f(x)=\cos(x+\alpha)(2\cos\alpha+1)=c$
I do not know how to solve it further.