0

$$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{1}{n^p}\right)}{\frac{1}{n^p}}\right)=1\ (p>0)$$ When it is converted to $$\lim_{n \to \infty} n^p\sin \left(\frac{1}{n^p}\right)$$ which doesn't make it simple to evaluate the value, how to find the limit?

Paolo
  • 935
canoe
  • 411

2 Answers2

4

If $p>0$ put $x=\frac{1}{n^p}$ then $$\lim_{n \to \infty} \left(\frac{sin\left(\frac{1}{n^p}\right)}{\frac{1}{n^p}}\right)=\lim_{x\to 0}\frac{sin(x)}{x}=1$$
For a nice proof see this article.

2

$\dfrac1{n^p}$ tends to zero and you can use a change of variable,

$$\lim_{n \to \infty} \left(\frac{\sin\left(\frac{1}{n^p}\right)}{\frac{1}{n^p}}\right)=\lim_{x\to0}\frac{\sin(x)}x=1.$$