$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
&\int_{-\infty}^{\infty}
{\pars{1 - \ic x}^{n - s_{1}} \over \pars{1 + \ic x}^{n + s_{2}}}\,\dd x =
-\ic\int_{-\infty\,\ic}^{\infty\,\ic}
{\pars{1 - x}^{n - s_{1}} \over \pars{1 + x}^{n + s_{2}}}\,\dd x =
-\ic\int_{1 - \infty\,\ic}^{1 + \infty\,\ic}
{\pars{2 - x}^{n - s_{1}} \over x^{n + s_{2}}}\,\dd x
\\[5mm] = &\
-2\ic\int_{1 - \infty\,\ic}^{1 + \infty\,\ic}
{2^{n - s_{1}}\pars{1 - x/2}^{n - s_{1}} \over
2^{n + s_{2}}\pars{x/2}^{n + s_{2}}}\,{\dd x \over 2}
\\[5mm] = &\
-2^{-s_{1} - s_{2} + 1}\ \ic
\color{#44f}{\int_{1/2 - \infty\,\ic}^{1/2 + \infty\,\ic}
x^{-n - s_{2}}\,\pars{1 - x}^{n - s_{1}}\,\dd x}\label{1}\tag{1}
\end{align}
I'll take the principal branch of $\ds{z^{-n - s_{2}}}$ and the branch-cut of
$\ds{\pars{1 - z}^{n - s_{1}}}$ 'along' $\ds{\left[1,\infty\right)}$ with
$\ds{0 < \,\mrm{arg}\pars{1 - z} < 2\pi}$. The integration is performed by closing the contour in a 'big semicircle' $\ds{\,\mc{C}_{R}}$ of radius $\ds{R}$ with $\ds{\Re\pars{z} < {1 \over 2}}$. The integration along $\ds{\,\mc{C}_{R}}$ vanishes out, when $\ds{R \to \infty}$, whenever
$\ds{\pars{~\Re\pars{-s_{1} - s_{2} + 1} < 0 \implies
\Re\pars{s_{1} + s_{2} > 1}~}}$
\begin{align}
&\color{#44f}{\int_{1/2 - \infty\,\ic}^{1/2 + \infty\,\ic}
x^{-n - s_{2}}\,\pars{1 - x}^{n - s_{1}}\,\dd x}
\\[5mm] \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\sim} &\
-\int_{-\infty}^{-\epsilon}\pars{-x}^{-n - s_{2}}
\exp\pars{\ic\pi\pars{-n - s_{2}}}\pars{1 - x}^{n - s_{1}}\,\dd x
\\[5mm] & -
\int_{\pi}^{-\pi}\epsilon^{-n - s_{2}}\exp\pars{\ic\theta\pars{-n - s_{2}}}
\epsilon\expo{\ic\theta}\ic\,\dd\theta
\\[5mm] & -
\int_{-\epsilon}^{-\infty}\pars{-x}^{-n - s_{2}}
\exp\pars{-\ic\pi\pars{-n - s_{2}}}\pars{1 - x}^{n - s_{1}}\,\dd x
\\[1cm] = &\
-\pars{-1}^{n}\exp\pars{-\ic\pi s_{2}}\int_{\epsilon}^{\infty}x^{-n - s_{2}}
\pars{1 + x}^{n - s_{1}}\,\dd x
\\[5mm] & -
2\ic\,\pars{-1}^{n}\,{\sin\pars{\pi s_{2}} \over n + s_{2} - 1}\,
\epsilon^{-n - s_{2} + 1}
\\[5mm] & +
\pars{-1}^{n}\exp\pars{\ic\pi s_{2}}\int_{\epsilon}^{\infty}x^{-n - s_{2}}
\pars{1 + x}^{n - s_{1}}\,\dd x
\\[1cm] = &\
2\ic\pars{-1}^{n}\sin\pars{\pi s_{2}}\int_{\epsilon}^{\infty}x^{-n - s_{2}}
\pars{1 + x}^{n - s_{1}}\,\dd x -
2\ic\,\pars{-1}^{n}\,{\sin\pars{\pi s_{2}} \over n + s_{2} - 1}\,
\epsilon^{-n - s_{2} + 1}
\\[1cm] = &\
2\ic\pars{-1}^{n}\sin\pars{\pi s_{2}}\,\times
\\[5mm] &\ \bracks{%
{\epsilon^{-n - s_{2} + 1}\pars{1 + \epsilon}^{n - s_{1}} \over n + s_{2} - 1} -
{1 \over -n - s_{2} + 1}\int_{\epsilon}^{\infty}x^{-n - s_{2} + 1}
\pars{n - s_{1}}\pars{1 + x}^{n - s_{1} - 1}\,\dd x}
\\[5mm] & -
2\ic\,\pars{-1}^{n}\,{\sin\pars{\pi s_{2}} \over n + s_{2} - 1}\,
\epsilon^{-n - s_{2} + 1}
\\[1cm] \stackrel{\mrm{as}\ \epsilon\ \to\ 0^{+}}{\to} &\
2\ic\pars{-1}^{n}\sin\pars{\pi s_{2}}\,
{n - s_{1} \over n + s_{2} - 1}\int_{0}^{\infty}
{x^{-n - s_{2} + 1} \over \pars{1 + x}^{s_{1} -n + 1}}\,\dd x\label{2}\tag{2}
\\[5mm] = &\
-2\ic\pars{-1}^{n}\,{\sin\pars{\pi s_{2}} \over n + s_{2} - 1}\,
\Gamma\pars{2 - n - s_{2}}\,{s_{1} - n \over \Gamma\pars{s_{1} - n + 1}}
\,\Gamma\pars{s_{1} + s_{2} - 1}
\\[1cm] = &\
-2\ic\pars{-1}^{n}\,{\sin\pars{\pi s_{2}} \over n + s_{2} - 1}\,
{\pi \over \Gamma\pars{-1 + n + s_{2}}\sin\pars{\pi\bracks{-1 + n + s_{2}}}}
\,{1 \over \Gamma\pars{s_{1} - n}}
\\[5mm] & \Gamma\pars{s_{1} + s_{2} - 1}
\\[1cm] = &\
-2\ic\pars{-1}^{n}\,\sin\pars{\pi s_{2}}\,
{\pi \over \Gamma\pars{n + s_{2}}\pars{-1}^{n - 1}\sin\pars{\pi s_{2}}}
\,{1 \over \Gamma\pars{s_{1} - n}}\,\Gamma\pars{s_{1} + s_{2} - 1}
\\[5mm] = &\
2\pi\ic\,
{\Gamma\pars{s_{1} + s_{2} - 1} \over
\Gamma\pars{n + s_{2}}\Gamma\pars{s_{1} - n}}\label{3}\tag{3}
\end{align}
In the last steps, I used the $\ds{\Gamma}$-Recurrence Property and the Euler Reflection Formula. The integral in \eqref{2} is a well know
Beta function integral representation which requires
\begin{align}
&\Re\pars{\bracks{-n - s_{2} + 1} + 1} > 0\,,\quad
\Re\pars{s_{1} + s_{2} - 1} > 0
\\[5mm] &
\implies
\Re\pars{s_{2} + n} < 2\ \mbox{and}\ \Re\pars{s_{1} + s_{2} > 1}
\end{align}
With \eqref{1} and \eqref{3}:
\begin{align}
&\int_{-\infty}^{\infty}
{\pars{1 - \ic x}^{n - s_{1}} \over \pars{1 + \ic x}^{n + s_{2}}}\,\dd x =
\pars{-2^{-s_{1} - s_{2} + 1}\ \ic}\bracks{%
2\pi\ic\,
{\Gamma\pars{s_{1} + s_{2} - 1} \over
\Gamma\pars{n + s_{2}}\Gamma\pars{s_{1} - n}}}
\\[5mm] = &\
\bbx{\ds{{4\pi \over 2^{s_{1} + s_{2}}}\,
{\Gamma\pars{s_{1} + s_{2} - 1} \over
\Gamma\pars{n + s_{2}}\Gamma\pars{s_{1} - n}}}}\,,\qquad
\Re\pars{s_{1} + s_{2}} > 1\,,\quad\Re\pars{s_{2} + n < 2}
\end{align}