Find last two digits of $33^{100}$.
My try:
So I have to compute $33^{100}\mod 100$
Now by Euler's Function $a^{\phi(n)}\equiv 1\pmod{n}$
So we have $33^{40}\equiv 1 \pmod{100}$
Again by Carmichael Function : $33^{20}\equiv 1 \pmod{100}$
Since $100=2\cdot40+20$ so we have $33^{100}=1\pmod{100}$
So last two digits are $01$
Is it right?