I'm learning about Fourier series (specifically Cesàro summation) and need help with the following problem:
Show that the Cesàro sum of the series $\sin x + \sin 2x + \sin 3x + \ldots$ is equal to $\frac{1}{2}\cot\frac{x}{2}$ for $x \neq 2k\pi, k \in \mathbb{Z}$.
My work and thoughts:
If the series is Cesaro summable to $\frac{1}{2}\cot\frac{x}{2}$ for $x \neq 2k\pi, k \in \mathbb{Z}$, this means that if $S_N$ is the $N$th partial sum then $\sigma_N \rightarrow \frac{1}{2}\cot\frac{x}{2}$, where
$$\sigma_N = \frac{S_1 + \ldots + S_N}{N}.$$
Using trigonometric identities, Euler's formula (and patience) it is not too difficult to show that for the sequence of partial sum we have
$$S_N = \frac{\cos\frac{x}{2} - \cos(N + \frac{1}{2})x}{2\sin{\frac{x}{2}}}.$$
How do I continue from here to find the given Cesàro sum of the series?
$$\sigma_N=\frac12\cot\frac x2-\frac{\cos\frac{3x}2+\cos\frac{5x}2+\cdots\cos\frac{(2N+1)x}2}{N}$$
– Simply Beautiful Art Apr 04 '16 at 21:22