How to prove or disprove $\forall x\in\Bbb{R}, \forall n\in\Bbb{N},n\gt 0\implies \left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor=\left\lfloor\frac{x}{n}\right\rfloor$.
So we want to prove $\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor\ge\left\lfloor\frac{x}{n}\right\rfloor$ and $\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor\le\left\lfloor\frac{x}{n}\right\rfloor$
Since $\lfloor x\rfloor\le x$, we can just start from here and prove $\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor\le\left\lfloor\frac{x}{n}\right\rfloor$
But for $\left\lfloor\frac{\lfloor x\rfloor}{n}\right\rfloor\ge\left\lfloor\frac{x}{n}\right\rfloor$, I have no idea how to start.