Suppose we seek to evaluate
$$\sum_{k=0}^n (-1)^k
{p+q+1\choose k} {p+n-k\choose n-k} {q+n-k\choose n-k}$$ which is
claimed to be $${p\choose n}{q\choose n}.$$
Introduce $${p+n-k\choose n-k}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{p+n-k}}{z^{n-k+1}}
\; dz$$
and $${q+n-k\choose n-k}
= \frac{1}{2\pi i}
\int_{|w|=\gamma} \frac{(1+w)^{q+n-k}}{w^{n-k+1}}
\; dw.$$
Observe that these integrals vanish when $k\gt n$ and we may extend
$k$ to infinity.
We thus obtain for the sum $$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{p+n}}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{(1+w)^{q+n}}{w^{n+1}}
\\ \times \sum_{k\ge 0} {p+q+1\choose k} (-1)^k
\frac{z^k w^k}{(1+z)^k (1+w)^k}
\; dw\; dz.$$
Note that while there is no restriction on $k$ the sum only contains a
finite number of terms. Continuing,
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{p+n}}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{(1+w)^{q+n}}{w^{n+1}}
\\ \times
\left(1-\frac{z w}{(1+z)(1+w)}\right)^{p+q+1}
\; dw\; dz$$
or $$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^{n-q-1}}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{(1+w)^{n-p-1}}{w^{n+1}}
(1+ z + w)^{p+q+1}
\; dw\; dz$$
Supposing that $p\ge n$ and $q\ge n$
and $\epsilon \ll 1$ and $\gamma \ll 1$ this may be re-written as
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1} (1+z)^{q+1-n}}
\frac{1}{2\pi i}
\int_{|w|=\gamma}
\frac{1}{w^{n+1} (1+w)^{p+1-n}}
\\ \times (1+ z + w)^{p+q+1}
\; dw\; dz$$
Put $w = (1+z) u$ so that $dw = (1+z) \; du$ to get
with $\delta \lt \gamma/(1+\epsilon)$
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{n+1} (1+z)^{q+1-n}}
\frac{1}{2\pi i}
\int_{|u|=\delta}
\frac{1}{(1+z)^{n+1} u^{n+1} (1+(1+z)u)^{p+1-n}}
\\ \times (1+ z)^{p+q+1} (1+u)^{p+q+1}
\; (1+z) \; du\; dz$$
Note that the pole at $u=-1/(1+z)$ has norm $\delta/\gamma \gt \delta$
so it is not inside the contour in $u$. This yields
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^p}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|u|=\delta}
\frac{1}{u^{n+1} (1+ u + z u)^{p+1-n}}
\\ \times (1+u)^{p+q+1}
\; du\; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(1+z)^p}{z^{n+1}}
\frac{1}{2\pi i}
\int_{|u|=\delta}
\frac{(1+u)^{n+q}}{u^{n+1} (1 + z u /(1+u))^{p+1-n}}
\; du\; dz$$
Extracting the residue for $z$ first we obtain
$$\sum_{k=0}^n {p\choose n-k}
\frac{(1+u)^{n+q}}{u^{n+1}}
{k+p-n\choose k}
(-1)^k \frac{u^k}{(1+u)^k}.$$
The residue for $u$ then yields $$\sum_{k=0}^n (-1)^k {p\choose n-k}
{k+p-n\choose k} {n-k+q\choose n-k}.$$
The sum term here is $$\frac{p!\times (p+k-n)!\times (q+n-k)!}
{(n-k)! (p+k-n)! \times k! (p-n)! \times (n-k)! q!}$$ which simplifies
to $$\frac{p!\times n! \times (q+n-k)!}
{(n-k)! \times n!\times k! (p-n)! \times (n-k)! q!}$$ which is
$${n\choose k} {p\choose n}{q+n-k\choose q}$$ so we have for the sum
$${p\choose n}
\sum_{k=0}^n {n\choose k} (-1)^k {q+n-k\choose q}.$$
To evaluae the remaining sum we introduce $${q+n-k\choose q}
= \frac{1}{2\pi i}
\int_{|v|=\epsilon} \frac{(1+v)^{q+n-k}}{v^{q+1}} \; dv$$
getting for the sum $${p\choose n}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{q+n}}{v^{q+1}}
\sum_{k=0}^n {n\choose k} (-1)^k \frac{1}{(1+v)^k} \; dv
\\ = {p\choose n}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{q+n}}{v^{q+1}}
\left(1-\frac{1}{1+v}\right)^n \; dv
\\ = {p\choose n}
\frac{1}{2\pi i}
\int_{|v|=\epsilon}
\frac{(1+v)^{q}}{v^{q-n+1}} \; dv
= {p\choose n} {q\choose q-n}$$
which is $${p\choose n} {q\choose n}.$$
This concludes the argument.