The question is show that $$ \int_0^{a} f(x) dx = \int_0^{a} f(a-x) dx $$
<p>Hence or otherwise, calculate the value of the following integral </p> <p>$$ \int^{\frac{\pi}{2}}_0 \frac{\sin^n(x)}{\sin^n(x) + \cos^n(x)} $$</p>
What I have done for the first part
$$ \int_0^{a} f(x) dx = \int_0^{a} f(a-x) dx $$
$$ \left[F(x) \right]^a_0 dx = \left[-F(a-x) \right]^a_0 $$
$$ F(a) - F(0) = \left[-F(a-a) - -F(a-0) \right] $$
$$ F(a) - F(0) =F(a) - F(0) $$
$$ LHS = RHS $$
Now I am stuck applying this to the integral. I have attempted this:
$$ \int^{\frac{\pi}{2}}_0 \frac{\sin^n(x)}{\sin^n(x) + \cos^n(x)} $$
Because $ \int_0^{a} f(x) dx = \int_0^{a} f(a-x) dx $ The integral is transformed to
$$ \int^{\frac{\pi}{2}}_0 \frac{\sin^n(\frac{\pi}{2}-x)}{\sin^n(\frac{\pi}{2}-x) + \cos^n(\frac{\pi}{2}-x)} $$
Which then becomes
$$ \int^{\frac{\pi}{2}}_0 \frac{\cos^n(x)}{\cos^n(x) + \sin^n(x)} $$
Now I am stuck...