Let $f: \mathbb R \to (0,\infty)$ be a function such that $f(x+y)\le f(x)f(y) , \forall x,y \in \mathbb R$ and $f$ is bounded on $[0,1]$ ; then does the limit $\lim_{x \to \infty}(f(x))^{1/x}$ exists ?
What I have found is $f(x)\le f(x/n)^n , \forall x \in \mathbb R , \forall n \in \mathbb N$ ; so say if $f(x) < M , \forall x \in [0,1]$ then we
get $f(x)\le f\Big(\dfrac x{[x]+1}\Big)^{[x]+1}\le M^{[x]+1} \le M^{2x} , \forall x>1$ ; so that $(f(x))^{1/x}$ remains bounded for large $x$ .
Please help . Thanks in advance .