I am relatively new to proofs so I am struggling to understand what really counts as "proved" and what doesn't.
Consider the vector space $\mathbb M $ of real numbers $\mathbb R$. Show that for $z,z_1 \in \mathbb R$, $d:\mathbb M \times \mathbb M \rightarrow\mathbb R^+$ defined as $$d(z,z_1)=f(\lvert z-z_1 \rvert), \space \space \space f:\mathbb R^+\rightarrow \mathbb R^+$$ is a metric provided that for $x,y \in \mathbb R^+$
$\text{(A)} \space \space f(0)=0 \\ \text{(B)} \space \space f(x)>0 \space \text{for} \space x>0 \\ \text{(C)} \space \space f(y) \ge f(x) \space \text{for} \space y \ge x \space \text{i.e. $f$ is a monotonically growing function}\\ \text{(D)} \space \space\frac{f(x)}{x}\ge \frac{f(y)}{y} \space \text{for} \space y \ge x$
This is what I have tried so far:
In order for a space to be a metric space the following axioms have to be true:
$\text{(1)} \space \space d \space \text{is real valued, finite and nonnegative } \\ \text{(2)} \space \space d(x,y)=0 \iff x=y \\ \text{(3)} \space \space d(x,y)=d(y,x) \\ \text{(4)} \space \space d(x,y) \le d(x,z)+d(z,y)$
For (1): $\forall x,y \in \mathbb R^+, \lvert x-y\rvert \ge 0$. From (B) it follows that if $\lvert x-y \rvert > 0 \implies f(\lvert x-y \rvert) \ge 0 \implies d\ge 0 \checkmark$
For (2): $\lvert x-y \rvert=0 \iff x=y \implies f(\lvert x-y \rvert)=f(0)=0 \iff x=y \checkmark$
Does this count as proving? I am not sure how to show 3) and 4). Maybe someone can show me or give me a hint. Thanks.