4

Prove that $\tan20^°\tan40^°\tan60^°\tan80^°=3$


\begin{align} \tan20^°\tan40^°\tan60^°\tan80^°&=\frac{\sin20^°\sin40^°\sin60^°\sin80^°}{\cos20^°\cos40^°\cos60^°\cos80^°} \\ &=\frac{2^4(\sin20^°\sin40^°\sin60^°\sin80^°)^2}{\sin 160^°} \end{align}

I am stuck here.

Vinod Kumar Punia
  • 5,648
  • 2
  • 41
  • 96

3 Answers3

11

Use $$\tan{(3x)}=\tan{x}\tan{(60^{\circ}+x)}\tan{(60^{\circ}-x)}$$ and let $x=20^\circ$.

Jack D'Aurizio
  • 353,855
math110
  • 93,304
  • 1
    +1 Very neat. Do you know a slick derivation of your $\tan3x$ equation? – almagest Apr 28 '16 at 13:05
  • 1
    @almagest Probably insert it into $\frac{\sin(3x)}{\cos(3x)}$ and calculate. It seems the most straight-forward, although there might be more elegant solutions out there. – Arthur Apr 28 '16 at 13:19
4

It is the case $m=4$ of the general formula:

$$ \prod_{k=1}^m\tan\left(\frac{k\pi}{2m+1} \right)=\sqrt{2m+1} $$

See here

Roby5
  • 4,287
Emilio Novati
  • 62,675
2

enter image description here

Then $$4\cos \alpha \cos (60^{\circ}-\alpha)\cos (60^{\circ}+\alpha)=\cos 3 \alpha$$ Similarly, $$4\sin \alpha \sin (60^{\circ}-\alpha)\sin (60^{\circ}+\alpha)=\sin 3 \alpha$$

Then $$\tan \alpha \tan (60^{\circ}-\alpha)\tan (60^{\circ}+\alpha)=\tan 3 \alpha$$

Roman83
  • 17,884
  • 3
  • 26
  • 70