The long and painful way: "differentiating, and differentiating."
Define $f,g\colon (0,1)\to \mathbb{R}$ by $f(x) = 1-4\left(x-\frac{1}{2}\right)^2$ and $g(x) = 1-\left(1-\frac{x}{1-x}\right)^2$. We will show
$$
h(x) \geq f(x) \geq g(x), \qquad x\in(0,1).
$$

Claim. $h(x) \geq f(x)$ for all $x\in(0,1)$.
Proof.
Both functions are $C^\infty$, and we have
$$
h''(x) - f''(x) = \frac{-8}{x(1-x)} \left(x^2-x+\frac{1}{8\ln 2}\right)
$$
which cancels at $x_0 \stackrel{\rm def}{=} \frac{1-\sqrt{1-\frac{1}{2\ln 2}}}{2}\simeq 0.236$ and $x_1 = 1-x_0$.
We thus have the following, as $\lim_{0^+} (h''-f'') = \lim_{1^-} (h''-f'') = -\infty$:
$$
\begin{array}{|c|ccc|}
\hline
x & 0 & &x_0 & \frac{1}{2} & x_1 && 1 \\ \hline
h''-f'' & -\infty &-&0&+&0& - &-\infty\\ \hline
\end{array}
$$
Moreover, since $h'(x) - f'(x) = \frac{1}{\ln 2}\left(8\ln 2 \cdot x + \ln\frac{1-x}{x} - 4\ln 2 \right)$, we have $\lim_{0^+} (h'-f') = - \lim_{1^-} (h'-f') = \infty$ and $(h'-f')(\frac{1}{2})=0$. Since $x_0 < \frac{1}{4}$ and $(h'-f')(\frac{1}{4}) = \frac{\ln\frac{3}{4}}{\ln 2} < 0$, we know that
$(h'-f')(x_0) = -(h'-f')(x_1) < 0$.
$$
\begin{array}{|c|ccc|}
\hline
x & 0 & &x_0 && \frac{1}{2} && x_1 && 1 \\ \hline
h''-f'' & -\infty &-&0&&+&&0& - &-\infty\\ \hline
h'-f' & +\infty &\searrow&-&\nearrow& 0&\nearrow&+& \searrow &-\infty\\ \hline
\end{array}
$$
This in turn implies that $h'-f'$ has exactly three roots, namely $r_0 < \frac{1}{2} < r_1$ with $r_1 = 1-r_0 \in (0,x_0)$.
$$
\begin{array}{|c|ccc|}
\hline
x & 0 & &r_0 && \frac{1}{2} && r_1 && 1 \\ \hline
h'-f' &&+&0&-& 0&+&0& - &\\ \hline
h-f &0&\nearrow&&\searrow& 0&\nearrow&& \searrow 0&\\ \hline
\end{array}
$$
This implies the claim, as $\lim_{0^+}(h-f) = (h-f)(1/2) = \lim_{1^-}(h-f) =0$: $h\geq f$ on $(0.1)$.
Claim. $f(x) \geq g(x)$ for all $x\in(0,1)$.
Proof.
Writing out the expression and massaging it, we get that for all $x\in (0,1)$
$$
f(x) - g(x) = \frac{x (2-x) (1-2 x)^2}{(1-x)^2}\geq 0.$$