I tried something like that.
$\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\int\limits_{-R}^{2-\epsilon}\frac{\text{dx}}{x-2}+\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\int\limits_{2+\epsilon}^{R}\frac{\text{dx}}{x-2}$
$=\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\left.\ln(x-2)\right\rvert_{-R}^{2-\epsilon}+\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\left.\ln(x-2)\right\rvert_{2+\epsilon}^{R}$
$=\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\ln\frac{2-\epsilon-2}{-R-2}+\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\frac{R-2}{2+\epsilon-2}$
$=\lim\limits_{\substack{R\rightarrow\infty\\\epsilon\rightarrow 0}}\ln\left(\frac{-\epsilon}{-R-2}\times\frac{R-2}{\epsilon}\right)$
$=\lim\limits_{R\rightarrow\infty}\ln\left(\frac{R-2}{R+2}\right)$
$=\lim\limits_{R\rightarrow\infty}\ln\left(\frac{1-2/R}{1+2/R}\right)$
$=\ln(1)=0$
Is it correct?