valid for all $s\ge 1$ $$\beta(s)=\sum_{n=0}^{\infty}\frac{1}{(2n+1)^s}$$
The particular value of $\Gamma\left(\frac{1}{4}\right)=3.6256099...$
Euler's constant is defined by $$\lim_{n \to \infty}\left[H_n-\ln(n)\right]=\gamma$$
Euler also showed that $$\gamma=\sum_{n=1}^{\infty}\left(\frac{1}{n}-\ln\left(\frac{n+1}{n}\right)\right)$$
Where $H_n=\sum_{k=1}^{n}\frac{1}{k}$
Show that,
$$\sum_{n=1}^{\infty}\left[\frac{\beta(2n)}{n}-\ln\left(\frac{n+1}{n}\right)\right] =\gamma+\ln\left(\frac{16\pi^2}{\Gamma^4\left(\frac{1}{4}\right)}\right)$$
We are greatly appreciated if anyone can answer this identity.