The task transformation.
The task is homogenius by $a, b, c.$
Let WLOG
$$a+b+c = 1,\quad (a,b.c)\in\mathbb R_+^3,$$
$$x=\sqrt[2]{\dfrac{a}{1-a}},\quad y=\sqrt[3]{\dfrac{b}{1-b}},\quad z=\sqrt[4]{\dfrac{c}{1-c}},$$
then the equivalent task is to prove the inequality
$$f(x,y,z) = x+y+z\ge \dfrac7{12}\cdot2^{6/7}\cdot3^{4/7}\tag1$$
under constraints
$$\dfrac1{1+x^2} + \dfrac1{1+y^3} + \dfrac1{1+z^4} = 2,\quad (x,y,z)\in\mathbb R_+.\tag2$$
The least value of $f(x,y,z)$ can be achieved on the edges of the given area or in the stationary points.
Checking of the edges.
$$\underline{\mathrm{Case\ x\to 0.}}$$
$$\dfrac1{1+y^3} + \dfrac1{1+z^4} = 1,\quad \dfrac1{1+z^4} = \dfrac{y^3}{1+y^3},$$
$$\dfrac1{1+z^4} = \dfrac1{1+y^{-3}} ,\quad z=y^{-3/4},$$
then the least value of
$$f_1(y) = y+y^{-3/4}$$
achieves when $$f_1'(y) = 1-\dfrac34x^{-7/4} = 0,\quad y_{1m} = \left(\dfrac34\right)^{4/7},$$
and equals to
$$f_{1m} = \dfrac7{12}2^{6/7}3^{4/7}\approx1.979626\tag3$$
(see also Wolfram Alpha)
$$\underline{\mathrm{Case\ y\to 0.}}$$
$$\dfrac1{1+x^2} + \dfrac1{1+z^4} = 1,\quad \dfrac1{1+x^2} = \dfrac{z^4}{1+z^4},$$
$$\dfrac1{1+x^2} = \dfrac1{1+z^{-4}},\quad x=\dfrac1{z^2},$$
then the least value of
$$f_2(z) = z+\dfrac1{z^2}$$
achieves when $$f_2'(z) = 1-2z^{-3} = 0,\quad z_{2m} = \sqrt[3]2,$$
and equals to
$$f_{2m} = \dfrac32 2^{1/3}\approx 1.889882\tag4$$
(see also Wolfram Alpha).
This means that
$$x_{2m} = \dfrac1{\sqrt[3]4},\quad \dfrac{a}{1-a} = \dfrac1{2\sqrt[3]2},\quad a=\dfrac1{2\sqrt[3]3+1},$$
$$z_{2m} = \sqrt[3]2,\quad \dfrac{c}{1-c} = 2\sqrt[3]2, \quad c=\dfrac{2\sqrt[3]3}{2\sqrt[3]3+1}.$$
Easy to check that for
$$a=\dfrac1{2\sqrt[3]3+1}, \quad c=\dfrac{2\sqrt[3]3}{2\sqrt[3]3+1},$$
$$\sqrt[2]{\dfrac a{1-a}} + \sqrt[4]{\dfrac{c}{1-c}} = f_{2m} \le f_{1m}$$
$$\underline{\mathrm{Case\ z\to 0.}}$$
$$\dfrac1{1+x^2} + \dfrac1{1+y^3} = 1,\quad \dfrac1{1+x^2} = \dfrac{y^3}{1+y^3},$$
$$\dfrac1{1+x^2} = \dfrac1{1+y^{-3}},\quad x=y^{-3/2},$$
then the least value of
$$f_3(y) = y+y^{-3/2}$$
achieves when $$f_3'(y) = 1-\dfrac32y^{-5/2} = 0,\quad y_{3m} = \left(\dfrac32\right)^{2/5},$$
and equals to
$$f_{3m} = \dfrac562^{3/5}3^{2/5}\approx1.960132\tag5$$
(see also Wolfram Alpha).
The stationary points
The stationary points of $f(x,y,z)$ can be defined using Lagrange multipliers method, as the stationary points of the function
$$F(x,y,z,\lambda)= x+y+z + \lambda\left(\dfrac1{1+x^2} + \dfrac1{1+y^3} + \dfrac1{1+z^4}-2\right),$$
from the system
$$F'_x = F'_y = F'_z = F'_\lambda = 0,$$
or
\begin{cases}
1-\lambda\dfrac{2x}{(1+x^2)^2}=0\\[4pt]
1-\lambda\dfrac{3y^2}{(1+y^3)^2}=0\\[4pt]
1-\lambda\dfrac{4z^3}{(1+z^4)^2}=0\\[4pt]
\dfrac1{1+x^2} + \dfrac1{1+y^3} + \dfrac1{1+z^4} = 2\\[4pt]
(x,y,z)\in\mathbb R_+,
\end{cases}
\begin{cases}
&\dfrac{1+y^3}{\sqrt3y} = \dfrac{1+x^2}{\sqrt{2x}} = \dfrac{1+z^4}{2z\sqrt z},\\[4pt]
&\dfrac1{1+y^3} = \dfrac{x^2}{1+x^2} + \dfrac{z^4}{1+z^4}\\[4pt]
&(x,y,z)\in\mathbb R_+,\\[4pt]
\end{cases}
$$\dfrac1{\sqrt3 y} = \dfrac{x\sqrt{2x}}2+\dfrac{z^2\sqrt z}2.$$
Let
$$s=\sqrt{2x},\quad t = \sqrt z,\tag6$$
then
$$y = \dfrac4{\sqrt3(s^3+2t^5)},\tag7$$
$$\dfrac{s^3+2t^5}4 + \dfrac{16}{9}\dfrac{\sqrt3}{(s^3+2t^5)^2} = \dfrac{s^4+4}{4s}=\dfrac{t^8+1}{2t^3}$$
\begin{cases}
t^3(s^4+4)=2(t^8+1)s\\[4pt]
t^5s - 2 + \dfrac{32}{3\sqrt3}\dfrac{s}{(s^3+2t^5)^2} = 0
\end{cases}
\begin{cases}
2ts\cdot t^8 - 4t^4 + 2ts-(ts)^4=0\\[4pt]
3\sqrt3(t^5s - 2)(s^3+2t^5)^2+32s=0,
\end{cases}
Let
$$p=ts,\tag8$$
then
\begin{cases}
2pt^8 - 4t^4 + 2p-p^4=0\\[4pt]
3\sqrt3(pt^4 - 2)(p^3+2t^8)^2+32pt^5=0,\tag9
\end{cases}
with the positive solutions
$$\binom{p}{t}\in\left\{\binom{1.03999}{1.13498}, \binom{0.87867}{0.764489}\right\},$$
$$\begin{pmatrix}x\\y\\z\end{pmatrix}\in
\left\{\begin{pmatrix}0.419809\\0.509112\\1.28818\end{pmatrix}, \begin{pmatrix}0.66051\\1.13174\\0.584443\end{pmatrix}\right\},$$
$$\begin{pmatrix}a\\b\\c\\f\end{pmatrix}\in
\left\{\begin{pmatrix}0.149833\\0.116576\\0.733591\\2.217101\end{pmatrix}, \begin{pmatrix}0.303754\\0.591766\\0.104482\\2.376693\end{pmatrix}\right\},$$
Results
The issue inequality is wrong, because for
$$a=\dfrac1{2\sqrt[3]3+1},\quad b\to 0,\quad c=\dfrac{2\sqrt[3]3}{2\sqrt[3]3+1},$$
$$LHS = \dfrac32 2^{1/3} < \dfrac7{12}2^{6/7}3^{4/7}.$$
Proved that in the task constraints
$$\sqrt[2]{\dfrac a{b+c}} + \sqrt[3]{\dfrac b{c+a}} + \sqrt[4]{\dfrac c{a+b}} \ge \dfrac32\cdot2^{1/3}\approx1.889882.$$
Appendium
\begin{cases}
p^4 = 2p(t^8+1) - 4t^4\\[4pt]
3\sqrt3(pt^4 - 2)(p^4+2pt^8)^2+32p^3t^5=0,
\end{cases}
\begin{cases}
p^4 = 2p(t^8+1) - 4t^4\\[4pt]
3\sqrt3(pt^4 - 2)(2t^8p+p-2t^4)^2+8p^3t^5=0\tag{10}
\end{cases}
Let
$$t=q\sqrt3,$$
then system $(10)$ changes to the form
\begin{cases}
p^4 = 162pq^8 + 2p - 36q^4\\[4pt]
(9pq^4 - 2)((p^4-162pq^8)^2+648p^5q^8)+96pq^5=0,
\end{cases}
and can be resolved using the polynomial reducing way.