3

Does there exists a holomorphic function $f:B_2(0)\to\mathbb C$ such that $$f\left(\frac{1}{2n}\right)=f\left(\frac{1}{2n-1}\right)=\frac{1}{n},\;\forall n\in\mathbb Z^+.$$

I do not have an idea?

saru
  • 1,246
serge
  • 429

1 Answers1

3

Let $$ z_n = \frac{1}{2n}, \qquad w_n = \frac{1}{2n - 1} $$ then $$ f(z_n) = 2z_n, \qquad f(w_n) = \frac{2}{(2n - 1) + 1} = \frac{2}{1/w_n + 1} = \frac{2w_n}{1 + w_n} $$ By the identity theorem we get the contradiction on the unit disc $$ 2z = f(z) = \frac{2z}{1 + z} $$

arney
  • 520