My long answer would be based on the fact that all the pivots of Positive-Definite matrix are always greater than 0
Now when $n=1$, matrix is $ 1 X 1 $, and pivot is $1$
When $n=2$, row reduced echelon form is \begin{bmatrix}
1 & x\\
0 & 1-x^2
\end{bmatrix}
and hence its pivots are $1, (1-x^2)$
When $n=3$, row reduced echelon form is,
\begin{bmatrix}
1 & x & x \\
0 & 1-x^2 & x(1-x) \\
0 & 0 & \frac{(1-x)(1+2x)}{(1+x)}
\end{bmatrix}
and hence its pivots are $1, (1-x^2), \frac{(1-x)(1+2x)}{(1+x)}$
When $n=4$, row reduced echelon form is,
\begin{bmatrix}
1 & x & x & x\\
0 & 1-x^2 & x(1-x) & x(1-x)\\
0 & 0 & \frac{(1-x)(1+2x)}{(1+x)} & \frac{(1-x)x}{(1+x)}\\
0 & 0 & 0 & \frac{(1-x)(1+3x)}{(1+2x)}
\end{bmatrix}
and hence its pivots are $1, (1-x^2),\frac{(1-x)(1+2x)}{(1+x)}, \frac{(1-x)(1+3x)}{(1+2x)}$
Generalizing the results for $n$, pivots are $1, \frac{(1-x)(1+x)}{(1+0x)},\frac{(1-x)(1+2x)}{(1+x)}, \frac{(1-x)(1+3x)}{(1+2x)}, ... ,\frac{(1-x)(1+(n-1)x)}{(1+(n-2)x)}$
For matrix to be positive-definite, all the pivots should be greater than $0$
Clearly first pivot, $(1)$ is $>0$
for second pivot, $(1-X^2) > 0 \implies -1<x<1$
for third pivot, $\frac{(1-x)(1+2x)}{(1+x)} > 0 \implies \frac{-1}{2}<x<1$
for fourth pivot, $\frac{(1-x)(1+3x)}{(1+2x)} > 0 \implies \frac{-1}{3}<x<1$
Generalizing this way, for n pivots, $\frac{-1}{(n-1)}<x<1$