It suffices to write the Sturm's sequence, cf. "Sturm's theorem" in
https://en.wikipedia.org/wiki/Sturm's_theorem
or rather, to ask Maple or Mathematica to write it. It is a formal method (as a gcd calculation); therefore the calculations can be huge.
Here Maple gives
$\left[{x}^{14}+2\,{x}^{13}-{x}^{12}-4\,{x}^{11}-{x}^{10}+4\,{x}^{8}+6\,{x}^
{7}-4\,{x}^{6}-6\,{x}^{5}+4\,{x}^{4}+4\,{x}^{2}-8\,x+4,{x}^{13}+{
\frac {13}{7}}\,{x}^{12}-6/7\,{x}^{11}-{\frac {22}{7}}\,{x}^{10}-5/7\,
{x}^{9}+{\frac {16}{7}}\,{x}^{7}+3\,{x}^{6}-{\frac {12}{7}}\,{x}^{5}-{
\frac {15}{7}}\,{x}^{4}+{\frac {8}{7}}\,{x}^{3}+4/7\,x-4/7,-10+{x}^{12
}+9/5\,{x}^{11}-2/5\,{x}^{10}-{\frac {21}{5}}\,{x}^{8}-{\frac {131}{20
}}\,{x}^{7}+{\frac {133}{20}}\,{x}^{6}+{\frac {177}{20}}\,{x}^{5}-{
\frac {31}{4}}\,{x}^{4}-{\frac {42}{5}}\,{x}^{2}+{\frac {92}{5}}\,x-1/
4\,{x}^{9}+2/5\,{x}^{3},-{\frac {25}{4}}\,{x}^{9}-17\,{x}^{3}+{x}^{11}
+{\frac {41}{8}}\,{x}^{10}-{\frac {97}{8}}\,{x}^{8}+{\frac {57}{8}}\,{
x}^{7}+{\frac {89}{8}}\,{x}^{6}-{\frac {79}{8}}\,{x}^{5}+{\frac {15}{4
}}\,{x}^{4}+32\,{x}^{2}-17\,x,{\frac {128}{293}}-{x}^{10}+{\frac {661}
{293}}\,{x}^{8}-{\frac {77}{293}}\,{x}^{7}-{\frac {685}{293}}\,{x}^{6}
+{\frac {355}{293}}\,{x}^{5}-{\frac {278}{293}}\,{x}^{4}-{\frac {1472}
{293}}\,{x}^{2}+{\frac {488}{293}}\,x+{\frac {114}{293}}\,{x}^{9}+{
\frac {1128}{293}}\,{x}^{3},{x}^{9}+{\frac {34152}{79351}}\,{x}^{3}-{
\frac {2224}{79351}}\,{x}^{8}-{\frac {143283}{79351}}\,{x}^{7}+{\frac
{23809}{79351}}\,{x}^{6}+{\frac {177833}{79351}}\,{x}^{5}-{\frac {
101647}{79351}}\,{x}^{4}-{\frac {255976}{79351}}\,{x}^{2}+{\frac {
316752}{79351}}\,x-{\frac {103400}{79351}},-{\frac {4874668}{2473535}}
-{x}^{8}-{\frac {3702696}{2473535}}\,{x}^{7}+{\frac {1102024}{2473535}
}\,{x}^{6}+{\frac {4719882}{2473535}}\,{x}^{5}+{\frac {13061}{107545}}
\,{x}^{4}-{\frac {712376}{2473535}}\,{x}^{2}+{\frac {5795756}{2473535}
}\,x-{\frac {2517376}{2473535}}\,{x}^{3},-{\frac {130644976}{71135621}
}\,{x}^{3}-{x}^{7}-{\frac {117877931}{71135621}}\,{x}^{6}+{\frac {
42199772}{71135621}}\,{x}^{5}+{\frac {191521943}{71135621}}\,{x}^{4}+{
\frac {34202204}{71135621}}\,{x}^{2}+{\frac {119672796}{71135621}}\,x-
{\frac {131248248}{71135621}},{\frac {4636190692}{845120667}}+{x}^{6}+
{\frac {469969805}{281706889}}\,{x}^{5}-{\frac {4887791734}{845120667}
}\,{x}^{4}+{\frac {1291091456}{281706889}}\,{x}^{2}-{\frac {9119197856
}{845120667}}\,x+{\frac {3667395556}{845120667}}\,{x}^{3},-{\frac {
118807258}{229387925}}\,{x}^{3}+{x}^{5}-{\frac {23751047557}{
17433482300}}\,{x}^{4}+{\frac {1733801327}{871674115}}\,{x}^{2}-{
\frac {6098757498}{4358370575}}\,x+{\frac {1595181704}{4358370575}},-{
\frac {14165381246176}{3678995429977}}+{x}^{4}+{\frac {148022761860}{
3678995429977}}\,{x}^{2}+{\frac {77449670408}{12730087993}}\,x-{\frac
{12687975462712}{3678995429977}}\,{x}^{3},-{x}^{3}+{\frac {
67591683841151}{107354894758164}}\,{x}^{2}+{\frac {82833966032893}{
53677447379082}}\,x-{\frac {543419063876153}{429419579032656}},{\frac
{3543406427639359}{2400254723765948}}+{x}^{2}-{\frac {1466258753587345
}{600063680941487}}\,x,x-{\frac {75792061996548545}{75819308999515908}
},-1\right]$