One may observe that
$$
\int_0^\infty \frac{1}{(e^x+1)}dx=\int_0^\infty \frac{e^{-x}}{(1+e^{-x})}dx=\int_0^1 \frac{du}{1+u}=\ln2, \tag1
$$
combining it with the following result
$$
\int_0^\infty \frac{1-e^{-sx}}{x(e^x+1)}dx=\frac12\log(\pi)+\log \Gamma\left(1+\frac{s}2\right)-\log \Gamma\left(\frac{1+s}2\right), \quad s>0, \tag2
$$ proved here, setting $s:=2n$, one gets
$$
\int_{0}^{\infty}\frac{e^{-2nx}+2nx-1}{x(e^x+1)}dx=\log\left(\frac{2^{2n}\:\Gamma\left(n+\frac12\right)}{\sqrt{\pi} \:\Gamma(n+1)} \right), \quad n>0, \tag3
$$
then, as $n=0,1,2\ldots,$ one may conclude with the duplication formula:
$$
\frac{2^{2n}\:\Gamma\left(n+\frac12\right)}{\sqrt{\pi} \:\Gamma(n+1)}=\frac{(2n)!}{(n!)^2}=\binom{2n}{n}
$$
which gives the announced result.