Gregory and Leibniz formula
(1)
$$-\sum_{m=1}^{\infty}\frac{(-1)^m}{2m-1}=\frac{\pi}{4}$$
We found another series equivalent to (1)
This is expressed in term of square numbers
$$-\sum_{m}^{\infty}\frac{\sum_{n=1}^{3m-2}(-1)^nn^2 }{\sum_{n=1}^{3m-2}(+1)^nn^2}=\frac{\pi}{4}$$
$$\frac{1^2}{1^2}+\frac{1-2^2+3^2-4^2}{1+2^2+3^2+4^2}+\frac{1-2^2+3^2-4^2+5^2-6^2+7^2}{1^2+2^2+3^2+4^2+5^2+6^2+7^2}+\cdots=\frac{\pi}{4}$$
Is there another series equivalent to (1) but expressable in term of cube numbers?