Suppose we seek to evaluate
$$\sum_{m=0}^n {n\choose m}
\sum_{k=0}^{n+1} \frac{1}{a+bk+1}
{a+bk\choose m} {k-n-1\choose k}.$$
Now we have
$${a+bk\choose m} =
\sum_{q=0}^m (-1)^{m-q} {a+bk+1\choose q}
\\ = (-1)^m + \sum_{q=1}^m (-1)^{m-q} {a+bk+1\choose q}$$
and hence
$$\frac{1}{a+bk+1} {a+bk\choose m}
= \frac{(-1)^m}{a+bk+1}
+ \sum_{q=1}^m \frac{1}{q} (-1)^{m-q} {a+bk\choose q-1}.$$
Now from the first component we get in the main sum
$$\sum_{m=0}^n {n\choose m}
\sum_{k=0}^{n+1} \frac{(-1)^m}{a+bk+1} {k-n-1\choose k}
\\ = \sum_{k=0}^{n+1} \frac{1}{a+bk+1} {k-n-1\choose k}
\sum_{m=0}^n {n\choose m} (-1)^m = 0.$$
We are thus left with the following sum:
$$\sum_{k=0}^{n+1} {k-n-1\choose k}
\sum_{m=0}^n {n\choose m}
\sum_{q=1}^m \frac{1}{q} (-1)^{m-q} {a+bk\choose q-1}.$$
Working with the inner sum we obtain
$$\sum_{m=1}^n {n\choose m}
\sum_{q=1}^m \frac{1}{q} (-1)^{m-q} {a+bk\choose q-1}
\\ = \sum_{q=1}^n \frac{(-1)^q}{q} {a+bk\choose q-1}
\sum_{m=q}^n {n\choose m} (-1)^m
\\ = \sum_{q=1}^n {n-1\choose q-1} \frac{1}{q} {a+bk\choose q-1}
\\ = \frac{1}{n}
\sum_{q=1}^n {n\choose q} {a+bk\choose q-1}.$$
Now put
$${a+bk\choose q-1} = {a+bk\choose a+bk-q+1}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{a+bk-q+2}} (1+z)^{a+bk} \; dz$$
to get
$$\frac{1}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{a+bk+2}} (1+z)^{a+bk}
\sum_{q=1}^n {n\choose q} z^q \; dz
\\ = \frac{1}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^{a+bk+2}} (1+z)^{a+bk}
(-1 + (1+z)^n)\; dz $$
The inner constant term does not contribute and we are left with
$$\frac{1}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{(1+z)^{a+bk+n}}{z^{a+bk+2}} \; dz
= \frac{1}{n}{a+bk+n\choose a+bk+1}
= \frac{1}{n}{a+bk+n\choose n-1}.$$
Returning to the main sum we thus have
$$\frac{1}{n} \sum_{k=0}^{n+1} {k-n-1\choose k}
{a+bk+n\choose n-1}
\\ = \frac{1}{n} \sum_{k=0}^{n+1} {-k\choose n+1-k}
{a+b(n+1)+n-bk\choose n-1}.$$
Note that $${-k\choose n+1-k}
= \frac{1}{(n+1-k)!} \prod_{q=0}^{n-k} (-k-q)
= \frac{(-1)^{n-k+1}}{(n+1-k)!} \prod_{q=0}^{n-k} (k+q)
\\ = \frac{(-1)^{n-k+1}}{(n+1-k)!} \frac{n!}{(k-1)!}
= (-1)^{n-k+1} {n\choose k-1}.$$
This means for the main sum
$$\frac{(-1)^{n+1}}{n} \sum_{k=1}^{n+1} {n\choose k-1}
(-1)^k {a+b(n+1)+n-bk\choose n-1}
\\ = \frac{(-1)^{n}}{n} \sum_{k=0}^{n} {n\choose k}
(-1)^k {a+bn+n-bk\choose n-1}.$$
Introduce
$${a+bn+n-bk\choose n-1}
= \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n-bk} \; dz$$
We get for the sum
$$\frac{(-1)^{n}}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n}
\sum_{k=0}^n {n\choose k} (-1)^k \frac{1}{(1+z)^{bk}}
\; dz
\\ = \frac{(-1)^{n}}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n}
\left(1-\frac{1}{(1+z)^b}\right)^n
\; dz
\\ = \frac{(-1)^{n}}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n}
\frac{((1+z)^b-1)^n}{(1+z)^{bn}}
\; dz
\\ = \frac{(-1)^{n}}{n} \frac{1}{2\pi i}
\int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+n}
((1+z)^b-1)^n\; dz.$$
This is
$$\frac{(-1)^{n}}{n} [z^{n-1}] (1+z)^{a+n} ((1+z)^b-1)^n.$$
Note however that
$$((1+z)^b-1)^n =
\left({b\choose 1}z + {b\choose 2}z^2 + \cdots\right)^n
= b^n z^n + \cdots$$
so there is no coefficient on $[z^{n-1}]$ because the powered term
starts at $z^n.$ Therefore the end result of the whole calculation is
$$\Large\color{#0A0}{0}.$$
Remark. We have made several uses of
$${n\choose m} = \sum_{q=0}^m (-1)^{m-q} {n+1\choose q}.$$
If this is not considered obvious we can prove it with the integral
$${n+1\choose q} =
\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z^{q+1}} (1+z)^{n+1} \;dz$$
to get
$$\frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{1}{z} (1+z)^{n+1}
\sum_{q=0}^m (-1)^{m-q} \frac{1}{z^q}\;dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
\frac{(-1)^m}{z} (1+z)^{n+1}
\frac{1-(-1/z)^{m+1}}{1+1/z}
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
(-1)^m (1+z)^{n+1}
\frac{1-(-1/z)^{m+1}}{1+z}
\; dz
\\ = \frac{1}{2\pi i}
\int_{|z|=\epsilon}
(-1)^m (1+z)^{n}
(1-(-1/z)^{m+1})
\; dz
\\ = - (-1)^m \times (-1)^{m+1} {n\choose m}
= {n\choose m}.$$