3

Compute following: $$ \sum_m\binom{n}{m}\sum_k\frac{\binom{a+bk}{m}\binom{k-n-1}{k}}{a+bk+1} $$ Only consider real numbers a, b such that the denominators are never 0.

Now I simplify it into $$ -\frac{1}{n}\sum_k\binom{n}{k}\binom{-n}{a+bk+1}(-1)^{a+bk+k} $$ I have problem with this question in which I can't eliminate coefficient b.

But I can't find any formula to get answer.Please help me!

2 Answers2

3

Here is a slightly different variation of the theme. It is convenient to use the coefficient of operator $[z^n]$ to denote the coefficient of $z^n$ of a series. This way we can write e.g. \begin{align*} [z^k](1+z)^n=\binom{n}{k} \end{align*}

We obtain \begin{align*} \sum_{m=0}^{n}&\binom{n}{m}\sum_{k=0}^{n}\frac{1}{a+bk+1}\binom{a+bk}{m}\binom{k-n-1}{k}\tag{1}\\ &=\sum_{k=0}^{n}\frac{(-1)^k}{a+bk+1}\binom{n}{k}\sum_{m=0}^{n}\binom{n}{m}\binom{a+bk}{m}\tag{2}\\ &=\sum_{k=0}^{n}\frac{(-1)^k}{a+bk+1}\binom{n}{k}\binom{a+bk+n}{n}\tag{3}\\ &=\frac{1}{n}\sum_{k=0}^{\infty}(-1)^k\binom{n}{k}\binom{a+bk+n}{n-1}\tag{4}\\ &=\frac{1}{n}\sum_{k=0}^{\infty}(-1)^k[z^{k}](1+z)^{n}[u^{n-1}](1+u)^{a+bk+n}\tag{5}\\ &=\frac{1}{n}[u^{n-1}](1+u)^{a+n}\sum_{k=0}^\infty(-1)^k(1+u)^{bk}[z^k](1+z)^n\tag{6}\\ &=\frac{1}{n}[u^{n-1}](1+u)^{a+n}(1-(1+u)^b)^n\tag{7}\\ &=\frac{(-1)^n}{n}[u^{n-1}](1+u)^{a+n}\left(\sum_{j=1}^\infty\binom{b}{j}u^j\right)^n\tag{8}\\ &=0 \end{align*}

Comment:

  • In (1) we write lower and upper limits of the sum.

  • In (2) we exchange the sums, do small rearrangements and use the identity \begin{align*} \binom{k-n-1}{k}=(-1)^k\binom{n}{k} \end{align*}

  • In (3) we apply Vandermonde's identity. With $q:= a+bk$ we get \begin{align*} \sum_{m=0}^{n}\binom{n}{m}\binom{q}{m}=\sum_{m=0}^{n}\binom{q}{m}\binom{n}{n-m}=\binom{q+n}{n} \end{align*}

  • In (4) we use the identity \begin{align*} \frac{q}{p-q+1}\binom{p}{q}=\binom{p}{q-1}\\ \end{align*} and we also change the uppper limit of the series to $\infty$ without changing anything since we add only zeros.

  • In (5) we apply the coefficient of operator twice

  • In (6) we use the linearity of the coefficient of operator and do some rearrangements

  • In (7) we apply the substitution rule of the coefficient of operator \begin{align*} A(u)=\sum_{k=0}^\infty a_ku^k=\sum_{k=0}^\infty u^k[z^k]A(z) \end{align*}

  • In (8) we use the binomial series expansion and observe the smallest power of $u$ is $n$ so that the coefficient $[u^{n-1}]$ is zero.

Markus Scheuer
  • 108,315
  • (+1). Good work, better than what I have. I see I can retire soon. – Marko Riedel May 21 '16 at 00:57
  • 1
    @MarkoRiedel: Thanks for this nice comment. But retirement? Surely you're joking Mr. Riedel! :-) Awaiting many inspiring answers from you .... – Markus Scheuer May 21 '16 at 08:32
  • The detour through $[z^k] (1 + z)^n$ is not needed, you go back to binomial coefficients anyway. – vonbrand Sep 04 '16 at 00:55
  • @vonbrand: Many thanks for the hint and also for the upvotes, professor! In fact I do not fully agree, since the motivation is to also present this technique in a methodologically coherent way for those who are not familiar with it. So, I do not necessarily focussing on the shortest possible road. This technique is based upon P.G. Egorychev's classic. – Markus Scheuer Sep 04 '16 at 12:24
2

Suppose we seek to evaluate

$$\sum_{m=0}^n {n\choose m} \sum_{k=0}^{n+1} \frac{1}{a+bk+1} {a+bk\choose m} {k-n-1\choose k}.$$

Now we have

$${a+bk\choose m} = \sum_{q=0}^m (-1)^{m-q} {a+bk+1\choose q} \\ = (-1)^m + \sum_{q=1}^m (-1)^{m-q} {a+bk+1\choose q}$$

and hence

$$\frac{1}{a+bk+1} {a+bk\choose m} = \frac{(-1)^m}{a+bk+1} + \sum_{q=1}^m \frac{1}{q} (-1)^{m-q} {a+bk\choose q-1}.$$

Now from the first component we get in the main sum

$$\sum_{m=0}^n {n\choose m} \sum_{k=0}^{n+1} \frac{(-1)^m}{a+bk+1} {k-n-1\choose k} \\ = \sum_{k=0}^{n+1} \frac{1}{a+bk+1} {k-n-1\choose k} \sum_{m=0}^n {n\choose m} (-1)^m = 0.$$

We are thus left with the following sum:

$$\sum_{k=0}^{n+1} {k-n-1\choose k} \sum_{m=0}^n {n\choose m} \sum_{q=1}^m \frac{1}{q} (-1)^{m-q} {a+bk\choose q-1}.$$

Working with the inner sum we obtain

$$\sum_{m=1}^n {n\choose m} \sum_{q=1}^m \frac{1}{q} (-1)^{m-q} {a+bk\choose q-1} \\ = \sum_{q=1}^n \frac{(-1)^q}{q} {a+bk\choose q-1} \sum_{m=q}^n {n\choose m} (-1)^m \\ = \sum_{q=1}^n {n-1\choose q-1} \frac{1}{q} {a+bk\choose q-1} \\ = \frac{1}{n} \sum_{q=1}^n {n\choose q} {a+bk\choose q-1}.$$

Now put

$${a+bk\choose q-1} = {a+bk\choose a+bk-q+1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{a+bk-q+2}} (1+z)^{a+bk} \; dz$$

to get

$$\frac{1}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{a+bk+2}} (1+z)^{a+bk} \sum_{q=1}^n {n\choose q} z^q \; dz \\ = \frac{1}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{a+bk+2}} (1+z)^{a+bk} (-1 + (1+z)^n)\; dz $$

The inner constant term does not contribute and we are left with

$$\frac{1}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(1+z)^{a+bk+n}}{z^{a+bk+2}} \; dz = \frac{1}{n}{a+bk+n\choose a+bk+1} = \frac{1}{n}{a+bk+n\choose n-1}.$$

Returning to the main sum we thus have

$$\frac{1}{n} \sum_{k=0}^{n+1} {k-n-1\choose k} {a+bk+n\choose n-1} \\ = \frac{1}{n} \sum_{k=0}^{n+1} {-k\choose n+1-k} {a+b(n+1)+n-bk\choose n-1}.$$

Note that $${-k\choose n+1-k} = \frac{1}{(n+1-k)!} \prod_{q=0}^{n-k} (-k-q) = \frac{(-1)^{n-k+1}}{(n+1-k)!} \prod_{q=0}^{n-k} (k+q) \\ = \frac{(-1)^{n-k+1}}{(n+1-k)!} \frac{n!}{(k-1)!} = (-1)^{n-k+1} {n\choose k-1}.$$

This means for the main sum

$$\frac{(-1)^{n+1}}{n} \sum_{k=1}^{n+1} {n\choose k-1} (-1)^k {a+b(n+1)+n-bk\choose n-1} \\ = \frac{(-1)^{n}}{n} \sum_{k=0}^{n} {n\choose k} (-1)^k {a+bn+n-bk\choose n-1}.$$

Introduce $${a+bn+n-bk\choose n-1} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n-bk} \; dz$$

We get for the sum

$$\frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n} \sum_{k=0}^n {n\choose k} (-1)^k \frac{1}{(1+z)^{bk}} \; dz \\ = \frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n} \left(1-\frac{1}{(1+z)^b}\right)^n \; dz \\ = \frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+bn+n} \frac{((1+z)^b-1)^n}{(1+z)^{bn}} \; dz \\ = \frac{(-1)^{n}}{n} \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^n} (1+z)^{a+n} ((1+z)^b-1)^n\; dz.$$

This is $$\frac{(-1)^{n}}{n} [z^{n-1}] (1+z)^{a+n} ((1+z)^b-1)^n.$$

Note however that $$((1+z)^b-1)^n = \left({b\choose 1}z + {b\choose 2}z^2 + \cdots\right)^n = b^n z^n + \cdots$$

so there is no coefficient on $[z^{n-1}]$ because the powered term starts at $z^n.$ Therefore the end result of the whole calculation is

$$\Large\color{#0A0}{0}.$$

Remark. We have made several uses of

$${n\choose m} = \sum_{q=0}^m (-1)^{m-q} {n+1\choose q}.$$

If this is not considered obvious we can prove it with the integral

$${n+1\choose q} = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z^{q+1}} (1+z)^{n+1} \;dz$$

to get $$\frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{1}{z} (1+z)^{n+1} \sum_{q=0}^m (-1)^{m-q} \frac{1}{z^q}\;dz \\ = \frac{1}{2\pi i} \int_{|z|=\epsilon} \frac{(-1)^m}{z} (1+z)^{n+1} \frac{1-(-1/z)^{m+1}}{1+1/z} \\ = \frac{1}{2\pi i} \int_{|z|=\epsilon} (-1)^m (1+z)^{n+1} \frac{1-(-1/z)^{m+1}}{1+z} \; dz \\ = \frac{1}{2\pi i} \int_{|z|=\epsilon} (-1)^m (1+z)^{n} (1-(-1/z)^{m+1}) \; dz \\ = - (-1)^m \times (-1)^{m+1} {n\choose m} = {n\choose m}.$$

Marko Riedel
  • 61,317